Local description of closed submodules of a~special module of entire functions of exponential type
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1621-1638

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi_1(z),\dots,\pi_q(z)$ be a system of polynomials of the complex variable $z$. In connection with the problem of spectral synthesis for systems of differential operators $\pi_1(D),\dots,\pi_q(D)$, $D=d/dz$, the problem of the local description of closed submodules is considered for a special module of entire functions over the ring $\mathbb C[\pi_1,\dots,\pi_q]$. It is shown that this problem can be reduced to the local description over the ring $\mathbb C[l]$, where $l$ is the Luroth polynomial associated with the system $\pi_1(z),\dots,\pi_q(z)$.
@article{SM_2001_192_11_a1,
     author = {I. F. Krasichkov-Ternovskii and A. B. Shishkin},
     title = {Local description of closed submodules of a~special module of entire functions of exponential type},
     journal = {Sbornik. Mathematics},
     pages = {1621--1638},
     publisher = {mathdoc},
     volume = {192},
     number = {11},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
AU  - A. B. Shishkin
TI  - Local description of closed submodules of a~special module of entire functions of exponential type
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1621
EP  - 1638
VL  - 192
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/
LA  - en
ID  - SM_2001_192_11_a1
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%A A. B. Shishkin
%T Local description of closed submodules of a~special module of entire functions of exponential type
%J Sbornik. Mathematics
%D 2001
%P 1621-1638
%V 192
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/
%G en
%F SM_2001_192_11_a1
I. F. Krasichkov-Ternovskii; A. B. Shishkin. Local description of closed submodules of a~special module of entire functions of exponential type. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1621-1638. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/