Local description of closed submodules of a~special module of entire functions of exponential type
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1621-1638
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\pi_1(z),\dots,\pi_q(z)$ be a system of polynomials of the complex variable $z$. In connection with the problem of spectral synthesis for systems of differential operators
$\pi_1(D),\dots,\pi_q(D)$, $D=d/dz$, the problem of the local description of closed submodules is considered for a special module of entire functions over the ring $\mathbb C[\pi_1,\dots,\pi_q]$. It is shown that this problem can be reduced to the local description over the ring $\mathbb C[l]$, where $l$ is the Luroth polynomial associated with the system $\pi_1(z),\dots,\pi_q(z)$.
@article{SM_2001_192_11_a1,
author = {I. F. Krasichkov-Ternovskii and A. B. Shishkin},
title = {Local description of closed submodules of a~special module of entire functions of exponential type},
journal = {Sbornik. Mathematics},
pages = {1621--1638},
publisher = {mathdoc},
volume = {192},
number = {11},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/}
}
TY - JOUR AU - I. F. Krasichkov-Ternovskii AU - A. B. Shishkin TI - Local description of closed submodules of a~special module of entire functions of exponential type JO - Sbornik. Mathematics PY - 2001 SP - 1621 EP - 1638 VL - 192 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/ LA - en ID - SM_2001_192_11_a1 ER -
%0 Journal Article %A I. F. Krasichkov-Ternovskii %A A. B. Shishkin %T Local description of closed submodules of a~special module of entire functions of exponential type %J Sbornik. Mathematics %D 2001 %P 1621-1638 %V 192 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/ %G en %F SM_2001_192_11_a1
I. F. Krasichkov-Ternovskii; A. B. Shishkin. Local description of closed submodules of a~special module of entire functions of exponential type. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1621-1638. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/