Local description of closed submodules of a special module of entire functions of exponential type
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1621-1638 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\pi_1(z),\dots,\pi_q(z)$ be a system of polynomials of the complex variable $z$. In connection with the problem of spectral synthesis for systems of differential operators $\pi_1(D),\dots,\pi_q(D)$, $D=d/dz$, the problem of the local description of closed submodules is considered for a special module of entire functions over the ring $\mathbb C[\pi_1,\dots,\pi_q]$. It is shown that this problem can be reduced to the local description over the ring $\mathbb C[l]$, where $l$ is the Luroth polynomial associated with the system $\pi_1(z),\dots,\pi_q(z)$.
@article{SM_2001_192_11_a1,
     author = {I. F. Krasichkov-Ternovskii and A. B. Shishkin},
     title = {Local description of closed submodules of a~special module of entire functions of exponential type},
     journal = {Sbornik. Mathematics},
     pages = {1621--1638},
     year = {2001},
     volume = {192},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
AU  - A. B. Shishkin
TI  - Local description of closed submodules of a special module of entire functions of exponential type
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1621
EP  - 1638
VL  - 192
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/
LA  - en
ID  - SM_2001_192_11_a1
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%A A. B. Shishkin
%T Local description of closed submodules of a special module of entire functions of exponential type
%J Sbornik. Mathematics
%D 2001
%P 1621-1638
%V 192
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/
%G en
%F SM_2001_192_11_a1
I. F. Krasichkov-Ternovskii; A. B. Shishkin. Local description of closed submodules of a special module of entire functions of exponential type. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1621-1638. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a1/

[1] Krasichkov-Ternovskii I. F., “Spektralnyi sintez v kompleksnoi oblasti dlya differentsialnogo operatora s postoyannymi koeffitsientami. I: Teorema dvoistvennosti”, Matem. sb., 182:11 (1991), 1559–1587 | MR

[2] Krasichkov-Ternovskii I. F., “Spektralnyi sintez v kompleksnoi oblasti dlya differentsialnogo operatora s postoyannymi koeffitsientami. II: Metod modulei”, Matem. sb., 183:1 (1992), 3–19

[3] Krasichkov-Ternovskii I. F., “Spektralnyi sintez v kompleksnoi oblasti dlya differentsialnogo operatora s postoyannymi koeffitsientami. III: Obilnye podmoduli”, Matem. sb., 183:6 (1992), 55–86 | MR

[4] Krasichkov-Ternovskii I. F., “Spektralnyi sintez v kompleksnoi oblasti dlya differentsialnogo operatora s postoyannymi koeffitsientami. IV: Sintez”, Matem. sb., 183:8 (1992), 23–46 | MR

[5] Shishkin A. B., “Spektralnyi sintez dlya sistem differentsialnykh operatorov s postoyannymi koeffitsientami. Teorema dvoistvennosti”, Matem. sb., 189:9 (1998), 143–160 | MR | Zbl

[6] Chebotarev N. G., Teoriya algebraicheskikh funktsii, OGIZ, M., 1948

[7] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[8] Krasichkov-Ternovskii I. F., “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi, I”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 44–66 | MR

[9] Gaider D., Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986 | MR

[10] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[11] Gelfond A. O., Ischislenie konechnykh raznostei, Fizmatgiz, M., 1959 | MR

[12] Krasichkov-Ternovskii I. F., “Spektralnyi sintez analiticheskikh funktsii na sistemakh vypuklykh oblastei”, Matem. sb., 111 (153):1 (1980), 3–41 | MR