Homogenization of the boundary-value problem for the biharmonic equation in a domain containing thin canals of small length
Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1553-1585 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is devoted to homogenization of the boundary-value problem for the biharmonic equation in a planar domain containing thin canals of width $a_\varepsilon$ and of small length $\varepsilon^q$ $(q>0)$ situated $\varepsilon$-periodically along one of the coordinate axes.
@article{SM_2001_192_10_a7,
     author = {T. A. Shaposhnikova},
     title = {Homogenization of the~boundary-value problem for the~biharmonic equation in a~domain containing thin canals of small length},
     journal = {Sbornik. Mathematics},
     pages = {1553--1585},
     year = {2001},
     volume = {192},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_10_a7/}
}
TY  - JOUR
AU  - T. A. Shaposhnikova
TI  - Homogenization of the boundary-value problem for the biharmonic equation in a domain containing thin canals of small length
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1553
EP  - 1585
VL  - 192
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_10_a7/
LA  - en
ID  - SM_2001_192_10_a7
ER  - 
%0 Journal Article
%A T. A. Shaposhnikova
%T Homogenization of the boundary-value problem for the biharmonic equation in a domain containing thin canals of small length
%J Sbornik. Mathematics
%D 2001
%P 1553-1585
%V 192
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2001_192_10_a7/
%G en
%F SM_2001_192_10_a7
T. A. Shaposhnikova. Homogenization of the boundary-value problem for the biharmonic equation in a domain containing thin canals of small length. Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1553-1585. http://geodesic.mathdoc.fr/item/SM_2001_192_10_a7/

[1] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Kiev, 1974

[2] Shaposhnikova T. A., “Ob usrednenii zadachi Neimana v oblasti, chast kotoroi predstavlyaet soboi sovokupnost kanalov”, Differents. uravneniya, 2001 (to appear)

[3] Oleinik O. A., Shaposhnikova T. A., “On the homogenization of the Poisson equation in partially perforated domains with arbitrary density of cavities and mixed type conditions on their boundary”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 7:3 (1996), 129–146 | MR | Zbl