Homogenization of the~boundary-value problem for the~biharmonic equation in a~domain containing thin canals of small length
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1553-1585
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The present paper is devoted to homogenization of the boundary-value problem for the biharmonic equation in a planar domain containing thin canals of width $a_\varepsilon$ and of small length $\varepsilon^q$ $(q>0)$ situated $\varepsilon$-periodically along one of the coordinate axes.
			
            
            
            
          
        
      @article{SM_2001_192_10_a7,
     author = {T. A. Shaposhnikova},
     title = {Homogenization of the~boundary-value problem for the~biharmonic equation in a~domain containing thin canals of small length},
     journal = {Sbornik. Mathematics},
     pages = {1553--1585},
     publisher = {mathdoc},
     volume = {192},
     number = {10},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_10_a7/}
}
                      
                      
                    TY - JOUR AU - T. A. Shaposhnikova TI - Homogenization of the~boundary-value problem for the~biharmonic equation in a~domain containing thin canals of small length JO - Sbornik. Mathematics PY - 2001 SP - 1553 EP - 1585 VL - 192 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_10_a7/ LA - en ID - SM_2001_192_10_a7 ER -
%0 Journal Article %A T. A. Shaposhnikova %T Homogenization of the~boundary-value problem for the~biharmonic equation in a~domain containing thin canals of small length %J Sbornik. Mathematics %D 2001 %P 1553-1585 %V 192 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2001_192_10_a7/ %G en %F SM_2001_192_10_a7
T. A. Shaposhnikova. Homogenization of the~boundary-value problem for the~biharmonic equation in a~domain containing thin canals of small length. Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1553-1585. http://geodesic.mathdoc.fr/item/SM_2001_192_10_a7/
