On a series of birationally rigid varieties with a~pencil of Fano hypersurfaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1543-1551
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that a general divisor of bidegree $(2,M)$ in $\mathbb P^1\times\mathbb P^M$ for $M\geqslant 4$ is a birationally rigid variety and that the group of its birational automorphisms consists of two elements.
			
            
            
            
          
        
      @article{SM_2001_192_10_a6,
     author = {I. V. Sobolev},
     title = {On a series of birationally rigid varieties with a~pencil of {Fano} hypersurfaces},
     journal = {Sbornik. Mathematics},
     pages = {1543--1551},
     publisher = {mathdoc},
     volume = {192},
     number = {10},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_10_a6/}
}
                      
                      
                    I. V. Sobolev. On a series of birationally rigid varieties with a~pencil of Fano hypersurfaces. Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1543-1551. http://geodesic.mathdoc.fr/item/SM_2001_192_10_a6/
