On a series of birationally rigid varieties with a pencil of Fano hypersurfaces
Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1543-1551 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that a general divisor of bidegree $(2,M)$ in $\mathbb P^1\times\mathbb P^M$ for $M\geqslant 4$ is a birationally rigid variety and that the group of its birational automorphisms consists of two elements.
@article{SM_2001_192_10_a6,
     author = {I. V. Sobolev},
     title = {On a series of birationally rigid varieties with a~pencil of {Fano} hypersurfaces},
     journal = {Sbornik. Mathematics},
     pages = {1543--1551},
     year = {2001},
     volume = {192},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_10_a6/}
}
TY  - JOUR
AU  - I. V. Sobolev
TI  - On a series of birationally rigid varieties with a pencil of Fano hypersurfaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1543
EP  - 1551
VL  - 192
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_10_a6/
LA  - en
ID  - SM_2001_192_10_a6
ER  - 
%0 Journal Article
%A I. V. Sobolev
%T On a series of birationally rigid varieties with a pencil of Fano hypersurfaces
%J Sbornik. Mathematics
%D 2001
%P 1543-1551
%V 192
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2001_192_10_a6/
%G en
%F SM_2001_192_10_a6
I. V. Sobolev. On a series of birationally rigid varieties with a pencil of Fano hypersurfaces. Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1543-1551. http://geodesic.mathdoc.fr/item/SM_2001_192_10_a6/

[1] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86 (128):1 (1971), 140–166 | MR | Zbl

[2] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii s puchkom poverkhnostei Del Petstso”, Izv. RAN. Ser. matem., 62:1 (1998), 123–164 | MR | Zbl

[3] Pukhlikov A. V., “Biratsionalno zhestkie rassloeniya Fano”, Izv. RAN. Ser. matem., 64:3 (2000), 131–150 | MR | Zbl

[4] Bardelli F., “Polarized mixed Hodge structures: On irrationality of threefolds via degeneration”, Ann. Mat. Pura Appl. (4), 137 (1984), 287–369 | DOI | MR | Zbl

[5] Pukhlikov A. V., “Certain examples of birationally rigid varieties with a pencil of double quadrics”, J. Math. Sci., 94:1 (1999), 986–995 | DOI | MR | Zbl

[6] Grinenko M. M., “Biratsionalnye avtomorfizmy trekhmernogo dvoinogo konusa”, Matem. sb., 189:7 (1998), 37–52 | MR | Zbl

[7] Grinenko M. M., “Biratsionalnye svoistva puchkov poverkhnostei Del Petstso stepeni 1 i 2”, Matem. sb., 191:5 (2000), 17–38 | MR | Zbl

[8] Pukhlikov A. V., “Essentials of method of maximal singularities”, Explicit birational geometry of 3-folds, Cambridge Univ. Press, Cambridge, 2000, 73–100 | MR | Zbl

[9] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134 (1998), 401–426 | DOI | MR | Zbl

[10] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[11] Call F., Lyubeznik G., “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Commutative algebra: syzygies, multiplicities, and birational algebra, AMS-IMS-SIAM summer research conference on commutative algebra (July 4–10, 1992, Mount Holyoke College, South Hadley, MA, USA), Contemp. Math., 159, eds. W. J. Heinzer et al., Amer. Math. Soc., Providence, RI, 1994, 15–18 | MR | Zbl