On a series of birationally rigid varieties with a~pencil of Fano hypersurfaces
Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1543-1551

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a general divisor of bidegree $(2,M)$ in $\mathbb P^1\times\mathbb P^M$ for $M\geqslant 4$ is a birationally rigid variety and that the group of its birational automorphisms consists of two elements.
@article{SM_2001_192_10_a6,
     author = {I. V. Sobolev},
     title = {On a series of birationally rigid varieties with a~pencil of {Fano} hypersurfaces},
     journal = {Sbornik. Mathematics},
     pages = {1543--1551},
     publisher = {mathdoc},
     volume = {192},
     number = {10},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_10_a6/}
}
TY  - JOUR
AU  - I. V. Sobolev
TI  - On a series of birationally rigid varieties with a~pencil of Fano hypersurfaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1543
EP  - 1551
VL  - 192
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_10_a6/
LA  - en
ID  - SM_2001_192_10_a6
ER  - 
%0 Journal Article
%A I. V. Sobolev
%T On a series of birationally rigid varieties with a~pencil of Fano hypersurfaces
%J Sbornik. Mathematics
%D 2001
%P 1543-1551
%V 192
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_10_a6/
%G en
%F SM_2001_192_10_a6
I. V. Sobolev. On a series of birationally rigid varieties with a~pencil of Fano hypersurfaces. Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1543-1551. http://geodesic.mathdoc.fr/item/SM_2001_192_10_a6/