Boundary properties of solutions of equations of minimal surface kind
Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1491-1513 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalized solutions of equations of minimal-surface type are studied. It is shown that a solution makes at most countably many jumps at the boundary. In particular, a solution defined in the exterior of a disc extends by continuity to the boundary circle everywhere outside a countable point set. An estimate of the sum of certain non-local characteristics of the jumps of a solution at the boundary is presented. A result similar to Fatou's theorem on angular boundary values is proved.
@article{SM_2001_192_10_a4,
     author = {V. M. Miklyukov},
     title = {Boundary properties of solutions of equations of minimal surface kind},
     journal = {Sbornik. Mathematics},
     pages = {1491--1513},
     year = {2001},
     volume = {192},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_10_a4/}
}
TY  - JOUR
AU  - V. M. Miklyukov
TI  - Boundary properties of solutions of equations of minimal surface kind
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1491
EP  - 1513
VL  - 192
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_10_a4/
LA  - en
ID  - SM_2001_192_10_a4
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%T Boundary properties of solutions of equations of minimal surface kind
%J Sbornik. Mathematics
%D 2001
%P 1491-1513
%V 192
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2001_192_10_a4/
%G en
%F SM_2001_192_10_a4
V. M. Miklyukov. Boundary properties of solutions of equations of minimal surface kind. Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1491-1513. http://geodesic.mathdoc.fr/item/SM_2001_192_10_a4/

[1] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR

[2] Niche I. S. S., “O novykh rezultatakh v teorii minimalnykh poverkhnostei”, Matematika, 11:3 (1967), 37–100

[3] Miklyukov V. M., “Dve teoremy o granichnykh svoistvakh minimalnykh poverkhnostei v neparametricheskoi forme”, Matem. zametki, 21:4 (1977), 551–556 | MR | Zbl

[4] Lancaster K., “Nonparametric minimal surfaces in $\mathbb R^3$ whose boundaries have a jump discontinuity”, Internat. J. Math. Math. Sci., 11:4 (1988), 651–656 | DOI | MR | Zbl

[5] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[6] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR | Zbl

[7] Lavrentev M. A., “O nepreryvnosti odnolistnykh funktsii v zamknutykh oblastyakh”, Dokl. AN SSSR, 4 (1936), 207–210

[8] Suvorov G. D., Semeistva ploskikh topologicheskikh otobrazhenii, Izd-vo SO AN SSSR, Novosibirsk, 1965 | MR

[9] Finn R., “Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature”, J. Anal. Math., 14 (1965), 139–160 | DOI | MR | Zbl

[10] Osserman R., “Minimalnye poverkhnosti”, UMN, 22:4 (1967), 55–135 | MR