@article{SM_2001_192_10_a3,
author = {G. G. Laptev},
title = {Non-existence of solutions of semilinear parabolic differential inequalities in cones},
journal = {Sbornik. Mathematics},
pages = {1471--1490},
year = {2001},
volume = {192},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_10_a3/}
}
G. G. Laptev. Non-existence of solutions of semilinear parabolic differential inequalities in cones. Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1471-1490. http://geodesic.mathdoc.fr/item/SM_2001_192_10_a3/
[1] Galaktionov V. A., Vazquez J. L., The problem of blow-up in nonlinear parabolic equations, Preprint Math. 00/04, Univ. Bath. (UK), 2000 | MR
[2] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. MMO, 16, URSS, M., 1967, 209–292 | MR | Zbl
[3] Bandle C., Levine H. A., “On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains”, Trans. Amer. Math. Soc., 316 (1989), 595–622 | DOI | MR | Zbl
[4] Levine H. A., Meier P., “The value of the critical exponent for reaction-diffusion equations in cones”, Arch. Rational Mech. Anal., 109 (1990), 73–80 | DOI | MR | Zbl
[5] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR
[6] Levine H. A., “The role of critical exponents in blow-up theorems”, SIAM Rev., 32 (1990), 371–386 | DOI | MR
[7] Deng K., Levine H. A., “The role of critical exponent in blow-up theorems: the sequel”, J. Math. Anal. Appl., 243 (2000), 85–126 | DOI | MR | Zbl
[8] Konkov A. A., “O neotritsatelnykh resheniyakh kvazilineinykh ellipticheskikh neravenstv”, Izv. RAN. Ser. matem., 63:2 (1999), 41–127 | MR
[9] Kon'kov A. A., “Behavior of solutions of nonlinear second-order elliptic inequalities”, Nonlinear Anal., 42:7 (2000), 1253–1270 | DOI | MR | Zbl
[10] Kondratev V. A., Landis E. M., “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Matem. sb., 135:3 (1988), 346–360 | MR | Zbl
[11] Nguen Man Khung, “Ob otsutstvii polozhitelnykh reshenii nelineinykh ellipticheskikh uravnenii vtorogo poryadka v konicheskikh oblastyakh”, Differents. uravneniya, 34:4 (1998), 533–539 | MR
[12] Kurta V. V., “Ob otsutstvii polozhitelnykh reshenii u polulineinykh ellipticheskikh uravnenii”, Tr. MIAN, 227, Nauka, M., 1999, 162–169 | MR | Zbl
[13] Kurta V. V., Nekotorye voprosy kachestvennoi teorii nelineinykh differentsialnykh uravnenii vtorogo poryadka, Dis. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1994
[14] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb R^N$”, Tr. MIAN, 227, Nauka, M., 1999, 192–222 | MR | Zbl
[15] Pohozaev S., Tesei A., “Blow-up of nonnegative solutions to quasilinear parabolic inequalities”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11:2 (2000), 99–109 | MR | Zbl
[16] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii differentsialnykh neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001 (to appear) | MR
[17] Mitidieri E., Pohozaev S. I., “Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb R^n$”, J. Evolution Equat. (to appear) | MR
[18] Laptev G. G., “Ob otsutstvii reshenii odnogo klassa singulyarnykh polulineinykh differentsialnykh neravenstv”, Tr. MIAN, 232, Nauka, M., 2001, 223–235 | MR | Zbl
[19] Laptev G. G., “Otsutstvie globalnykh polozhitelnykh reshenii sistem polulineinykh ellipticheskikh neravenstv v konusakh”, Izv. RAN. Ser. matem., 64:6 (2000), 107–124 | MR | Zbl
[20] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR
[21] Hamada T., “On the existence and nonexistence of global solutions of semilinear parabolic equations with slowly decaying initial data”, Tsukuba J. Math., 21 (1997), 505–514 | MR | Zbl
[22] Zhang Q., “A new critical phenomenon for semilinear parabolic problems”, J. Math. Anal. Appl., 219 (1998), 125–139 | DOI | MR | Zbl