Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals
Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1451-1469
Cet article a éte moissonné depuis la source Math-Net.Ru
Simple conditions are found ensuring the equiconvergence of the Fourier expansion of a function $f(x)$ in $L[0,1]$ in the eigenfunctions and the associated functions of an integral operator $$ Af=\int_0^{1-x}A(1-x,t)f(t)\,dt+\alpha\int_0^xA(x,t)f(t)\,dt $$ and the expansions of $f(x)$ and $f(1-x)$ in the standard trigonometric system.
@article{SM_2001_192_10_a2,
author = {V. V. Kornev and A. P. Khromov},
title = {Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the~diagonals},
journal = {Sbornik. Mathematics},
pages = {1451--1469},
year = {2001},
volume = {192},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_10_a2/}
}
TY - JOUR AU - V. V. Kornev AU - A. P. Khromov TI - Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals JO - Sbornik. Mathematics PY - 2001 SP - 1451 EP - 1469 VL - 192 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2001_192_10_a2/ LA - en ID - SM_2001_192_10_a2 ER -
%0 Journal Article %A V. V. Kornev %A A. P. Khromov %T Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals %J Sbornik. Mathematics %D 2001 %P 1451-1469 %V 192 %N 10 %U http://geodesic.mathdoc.fr/item/SM_2001_192_10_a2/ %G en %F SM_2001_192_10_a2
V. V. Kornev; A. P. Khromov. Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals. Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1451-1469. http://geodesic.mathdoc.fr/item/SM_2001_192_10_a2/
[1] Khromov A. P., “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Matem. sb., 114 (156):3 (1981), 378–405 | MR | Zbl
[2] Khromov A. P., “Teorema ravnoskhodimosti dlya integralnogo operatora s peremennym verkhnim predelom integrirovaniya”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Sbornik statei, posvyaschennyi 70-letiyu P. L. Ulyanova, Izd-vo AFTs, M., 1999, 255–266 | MR
[3] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[4] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl