Approximation of attractors of semidynamical systems
Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1435-1450 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of approximation with prescribed accuracy of the attractors of semidynamical systems is considered. The problem is formulated in terms of the function of the rate of attraction. New results on the structure of unstable manifolds in the neighbourhood of a non-hyperbolic point are used. For a certain class of maps the unstable manifold is effectively constructed and an estimate of the rate of attraction to it is found.
@article{SM_2001_192_10_a1,
     author = {A. A. Kornev},
     title = {Approximation of attractors of semidynamical systems},
     journal = {Sbornik. Mathematics},
     pages = {1435--1450},
     year = {2001},
     volume = {192},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_10_a1/}
}
TY  - JOUR
AU  - A. A. Kornev
TI  - Approximation of attractors of semidynamical systems
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1435
EP  - 1450
VL  - 192
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_10_a1/
LA  - en
ID  - SM_2001_192_10_a1
ER  - 
%0 Journal Article
%A A. A. Kornev
%T Approximation of attractors of semidynamical systems
%J Sbornik. Mathematics
%D 2001
%P 1435-1450
%V 192
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2001_192_10_a1/
%G en
%F SM_2001_192_10_a1
A. A. Kornev. Approximation of attractors of semidynamical systems. Sbornik. Mathematics, Tome 192 (2001) no. 10, pp. 1435-1450. http://geodesic.mathdoc.fr/item/SM_2001_192_10_a1/

[1] Hale J. K., La Salle J. P., Slemrod M., “Theory of a general class of dissipative process”, J. Math. Anal. Appl., 39 (1972), 177–191 | DOI | MR | Zbl

[2] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Zapiski nauch. sem. LOMI, 27, Nauka, L., 1972, 97–115 | MR | Zbl

[3] Temam R., Infinite dimensional system in mechanics and physics, Springer-Verlag, New York, 1998

[4] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[5] Ladyzhenskaya O. A., “O nakhozhdenii globalnykh minimalnykh attraktorov dlya uravnenii Nave–Stoksa i nekotorykh drugikh uravnenii v chastnykh proizvodnykh”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[6] Hale J. K., Magalhaes L. T., Oliva W. M., An introduction to infinite dimensional dynamical systems – geometric theory, Appl. Math. Sci., 47, Springer-Verlag, New York, 1984. | MR

[7] Kostin I. N., “Ob odnom sposobe approksimatsii attraktorov”, Zapiski nauch. sem. LOMI, 188, Nauka, L., 1991, 87–104 | MR

[8] Foias C., Jolly M. S., Kukavica I., “Localization of attractors by their analytic properties”, Nonlinearity, 1996, no. 9, 1565–1581 | DOI | MR | Zbl

[9] Kamaev D. A., “Giperbolicheskie predelnye mnozhestva evolyutsionnykh uravnenii i metod Galerkina”, UMN, 35:3 (1980), 188–191 | MR

[10] Babin A. V., Vishik M. I., “Neustoichivye invariantnye mnozhestva polugrupp nelineinykh operatorov i ikh vozmuschenie”, UMN, 41:4 (1986), 3–34 | MR | Zbl

[11] Hale J. K., Raugel G., “Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation”, J. Differential Equations, 73 (1988), 197–214 | DOI | MR | Zbl

[12] Hale J. K., “Numerical dynamics”, Contemp. Math., 172 (1994), 1–29 | MR

[13] Kapitanskii L. V., Kostin I. N., “Attraktory nelineinykh evolyutsionnykh uravnenii i ikh approksimatsii”, Algebra i analiz, 2:1 (1990), 114–140 | MR

[14] Ladyzhenskaya O. A., Globalno ustoichivye raznostnye skhemy i ikh attraktory, Preprint, LOMI R-5-91, 1991 | MR

[15] Ladyzhenskaya O. A., “O novykh otsenkakh dlya uravnenii Nave–Stoksa i globalno ustoichivykh approksimatsiyakh”, Zapiski nauch. sem. LOMI, 200, Nauka, L., 1992, 98–109 | MR

[16] Kornev A. A., “K voprosu ob approksimatsii attraktorov poludinamicheskikh sistem”, Vestnik MGU. Ser. 1. Matem., mekh., 2000, no. 3, 24–28 | MR | Zbl

[17] Kornev A. A., “Ob odnom kriterii polnoi nepreryvnosti attraktora po parametru dlya nekotorogo klassa poludinamicheskikh sistem”, Dokl. RAN, 369:5 (1999), 597–599 | MR | Zbl

[18] Dymnikov V. P., Filatov A. N., Osnovy matematicheskoi teorii klimata, VINITI, M., 1994

[19] Kostin I. N., “Rate of attraction to a non-hyperbolic attractor”, Asymptotic Anal., 1998, no. 16, 203–222 | MR | Zbl

[20] Kostin I. N., Pilyugin S. Yu., “Ravnomernaya eksponentsialnaya ustoichivost attraktorov vozmuschennykh uravnenii”, Dokl. RAN, 369:4 (1999), 449–450 | MR | Zbl

[21] Komech A., Spohn H., Kunze M., “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Comm. Partial Differential Equations, 1997, no. 22, 307–335 | MR | Zbl

[22] Humphries A. R., Stuart A. M., “Runge–Kutta methods for dissipative and gradient dynamical systems”, SIAM J. Numer. Anal., 31:5 (1994), 1452–1485 | DOI | MR | Zbl

[23] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR | Zbl

[24] Hirsch M., Pugh C., Shub M., Invariant manifolds, Lectures notes in Math., 583, Springer-Verlag, Berlin, 1977 | MR

[25] Ladyzhenskaya O. A., Solonnikov V. A., “O printsipe linearizatsii i invariantnykh mnogoobraziyakh dlya zadach magnitnoi gidrodinamiki”, Zapiski nauch. sem. LOMI, 38, Nauka, L., 1973, 46–93 | MR | Zbl

[26] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[27] Kronover R. M., Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 1999

[28] Temam R., “Une methode d'approximation de la solution des equations de Navier–Stokes”, Bull. Soc. Math. France, 96 (1968), 115–152 | MR | Zbl

[29] Ladyzhenskaya O. A., Seregin G. A., “Ob odnom sposobe priblizhennogo resheniya nachalno-kraevykh zadach dlya uravnenii Nave–Stoksa”, Zapiski nauch. sem. LOMI, 197, Nauka, L., 1992, 87–119 | MR