On a smooth quintic 4-fold
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1399-1419

Voir la notice de l'article provenant de la source Math-Net.Ru

The birational geometry of an arbitrary smooth quintic 4-fold is studied using the properties of log pairs. As a result, a new proof of its birational rigidity is given and all birational maps of a smooth quintic 4-fold into fibrations with general fibre of Kodaira dimension zero are described. In the Addendum similar results are obtained for all smooth hypersurfaces of degree $n$ in $\mathbb P^n$ in the case of $n$ equal to 6, 7, or 8.
@article{SM_2000_191_9_a7,
     author = {I. A. Cheltsov},
     title = {On a smooth quintic 4-fold},
     journal = {Sbornik. Mathematics},
     pages = {1399--1419},
     publisher = {mathdoc},
     volume = {191},
     number = {9},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a7/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - On a smooth quintic 4-fold
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1399
EP  - 1419
VL  - 191
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_9_a7/
LA  - en
ID  - SM_2000_191_9_a7
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T On a smooth quintic 4-fold
%J Sbornik. Mathematics
%D 2000
%P 1399-1419
%V 191
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_9_a7/
%G en
%F SM_2000_191_9_a7
I. A. Cheltsov. On a smooth quintic 4-fold. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1399-1419. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a7/