On a smooth quintic 4-fold
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1399-1419
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The birational geometry of an arbitrary smooth quintic 4-fold is studied using the properties of log pairs. As a result, a new proof of its birational rigidity is given and all birational maps of a smooth quintic 4-fold into fibrations with general fibre of Kodaira dimension zero are described.
In the Addendum similar results are obtained for all smooth hypersurfaces of degree $n$ in $\mathbb P^n$ in the case of $n$ equal to 6, 7, or 8.
			
            
            
            
          
        
      @article{SM_2000_191_9_a7,
     author = {I. A. Cheltsov},
     title = {On a smooth quintic 4-fold},
     journal = {Sbornik. Mathematics},
     pages = {1399--1419},
     publisher = {mathdoc},
     volume = {191},
     number = {9},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a7/}
}
                      
                      
                    I. A. Cheltsov. On a smooth quintic 4-fold. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1399-1419. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a7/
