On some commutative subalgebras of the universal enveloping algebra of the Lie algebra $\mathfrak{gl}(n,\mathbb C)$
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1375-1382
Cet article a éte moissonné depuis la source Math-Net.Ru
For the Lie algebra $\mathfrak g=\mathfrak{gl}(n,\mathbb C)$ it is proved that the maximal commutative subalgebras of the Poisson algebra $P(\mathfrak g)$ obtained by the method of shifting the invariants can be lifted to the enveloping algebra. Moreover, this lifting can be carried out by means of the symmetrization map.
@article{SM_2000_191_9_a5,
author = {A. A. Tarasov},
title = {On some commutative subalgebras of the universal enveloping algebra of the {Lie} algebra $\mathfrak{gl}(n,\mathbb C)$},
journal = {Sbornik. Mathematics},
pages = {1375--1382},
year = {2000},
volume = {191},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a5/}
}
TY - JOUR
AU - A. A. Tarasov
TI - On some commutative subalgebras of the universal enveloping algebra of the Lie algebra $\mathfrak{gl}(n,\mathbb C)$
JO - Sbornik. Mathematics
PY - 2000
SP - 1375
EP - 1382
VL - 191
IS - 9
UR - http://geodesic.mathdoc.fr/item/SM_2000_191_9_a5/
LA - en
ID - SM_2000_191_9_a5
ER -
A. A. Tarasov. On some commutative subalgebras of the universal enveloping algebra of the Lie algebra $\mathfrak{gl}(n,\mathbb C)$. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1375-1382. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a5/
[1] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl
[2] Vinberg E. B., “O nekotorykh kommutativnykh podalgebrakh universalnoi obertyvayuschei algebry”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 3–25 | MR
[3] Nazarov M., Olshanski Gr., “Bethe subalgebras in twisted yangians”, Comm. Math. Phys., 178 (1996), 433–506 | DOI | MR
[4] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 55, VINITI, M., 1989, 137–309 | MR