Uniform convergence of Padé diagonal approximants for hyperelliptic functions
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1339-1373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The uniform convergence of Padé diagonal approximants is studied for functions in some class that is a natural generalization of hyperelliptic functions. The study is based on Nuttall's approach, which consists in the analysis of a certain Riemann boundary-value problem on the corresponding hyperelliptic Riemann surface. In terms of the solution of this problem, a strong asymptotic formula is obtained for non-Hermitian orthogonal polynomials that are the denominators of the Padé approximants. Under some fairly general assumptions, which are formulated in terms of the periods of the complex Green's function corresponding to the problem and which hold in “general position”, a version of the Baker–Gammel–Willes conjecture is proved.
@article{SM_2000_191_9_a4,
     author = {S. P. Suetin},
     title = {Uniform convergence of {Pad\'e} diagonal approximants for hyperelliptic functions},
     journal = {Sbornik. Mathematics},
     pages = {1339--1373},
     year = {2000},
     volume = {191},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a4/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Uniform convergence of Padé diagonal approximants for hyperelliptic functions
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1339
EP  - 1373
VL  - 191
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_9_a4/
LA  - en
ID  - SM_2000_191_9_a4
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Uniform convergence of Padé diagonal approximants for hyperelliptic functions
%J Sbornik. Mathematics
%D 2000
%P 1339-1373
%V 191
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2000_191_9_a4/
%G en
%F SM_2000_191_9_a4
S. P. Suetin. Uniform convergence of Padé diagonal approximants for hyperelliptic functions. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1339-1373. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a4/

[1] Chebyshev P. L., Polnoe sobranie sochinenii, T. II, III, Izd-vo AN SSSR, M.–L., 1948 | MR

[2] Markov A. A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M., 1948 | MR

[3] Chebyshev P. L., “O nepreryvnykh drobyakh”, Uchenye zapiski Imp. Akademii Nauk, III (1855), S. 636–664. ; Полное собрание сочинений, Т. II, Изд-во АН СССР, М.–Л., 1948, 103–126 | MR

[4] Markov A. A., “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19 (1895), 93–104 | DOI | MR

[5] Gonchar A. A., “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97 (139) (1975), 607–629 | MR | Zbl

[6] Rakhmanov E. A., “O skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 104 (146):2 (1977), 271–291 | MR | Zbl

[7] Magnus A. P., “On optimal Padé-type cuts”, Ann. Numer. Math., 4:4 (1997), 435–449 | MR | Zbl

[8] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR

[9] Nuttall J., “Sets of minimal capacity, Padé approximations and the bubble problem”, Bifurcation phenomena in mathematical physics and related topics, eds. C. Bardos, D. Bessis, Reidel, Dordrecht, 1980, 185–201

[10] Dadfar M. B., Geer J. F., Andersen C. M., “Perturbation analysis of the limit cycle of the free van der Pol equation”, SIAM J. Appl. Math., 42:3 (1982), 678–693 | DOI | MR

[11] Andersen C. M., Geer J. F., “Power series expansions for the frequency and period of the limit cycle of the van der Pol equation”, SIAM J. Appl. Math., 44:5 (1984), 881–895 | DOI | MR | Zbl

[12] Karabut E. A., “Primenenie stepennykh ryadov po vremeni v zadache o dvizhenii tsilindricheskoi polosti v zhidkosti. III: Zamena peremennykh v stepennykh ryadakh”, Dinamika sploshnoi sredy, no. 81, 1987, 57–77 | MR | Zbl

[13] Andrianov I. V., “Application of Padé-approximants in perturbation methods”, Adv. Mech., 14:2 (1991), 3–25 | MR

[14] Cattapan G., Maglione E., From bound states to resonances: analytic continuation of the wave function, , 20 Jan 2000 E-print nucl-th/0001037

[15] Baker G. A., Jr., “Defects and the convergence of Padé approximants”, International Conference of Rational Approximations (Antwerpen, Belgium, June 6–11, 1999) (to appear) | MR

[16] Stahl H., “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse. Math. (6), Spec. Iss. (1996), 121–193 | MR | Zbl

[17] Stahl H., “Conjectures around Baker–Gammel–Willes conjecture”, J. Constr. Approx., 13 (1997), 287–292 | DOI | MR | Zbl

[18] Stahl H., “Spurious poles in Padé approximation”, J. Comput. Appl. Math., 99:1–2 (1998), 511–527 | DOI | MR | Zbl

[19] Gilewicz J., Approximants de Padé, Lecture Notes in Math., 667, Springer, Heidelberg, 1978 | MR | Zbl

[20] Gilewicz J., Pindor M., Padé approximants and noise: the case of geometric series, Technical report, Centre de Physique Théoretique, Marseille, 1997

[21] Dumas S., Sur le développement des fonctions elliptiques en fractions continues, Thesis, Zürich, 1908 | Zbl

[22] Nikishin E. M., “O skhodimosti diagonalnykh approksimatsii Pade dlya nekotorykh funktsii”, Matem. sb., 101 (143):2 (1976), 280–292 | MR | Zbl

[23] Nuttall J., Singh R. S., “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approx. Theory, 21 (1977), 1–42 | DOI | MR | Zbl

[24] Gonchar A. A., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 118 (160):4 (8) (1982), 535–556 | MR | Zbl

[25] Gonchar A. A., “O skhodimosti diagonalnykh approksimatsii Pade v sfericheskoi metrike”, Matematicheskie struktury. Vychislitelnaya matematika. Matematicheskoe modelirovanie, Trudy, posvyaschennye semidesyatiletiyu akademika L. Ilieva, Sofiya, 1984, 19–35

[26] Stahl H., “Orthogonal polynomials with complex valued weight function. I; II”, Constr. Approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl

[27] Nuttall J., “Asymptotics of diagonal Hermite–Pade polynomials”, J. Approx. Theory, 42 (1984), 299–386 | DOI | MR | Zbl

[28] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[29] Bernshtein S. N., Sobranie sochinenii, T. 1, Izd-vo AN SSSR, M., 1952

[30] Widom H., “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3 (1969), 127–232 | DOI | MR | Zbl

[31] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125 (167):2 (10) (1984), 231–258 | MR

[32] Akhiezer N. I., “Ob ortogonalnykh mnogochlenakh na neskolkikh intervalakh”, Dokl. AN SSSR, 134:1 (1960), 9–12 | MR | Zbl

[33] Akhiezer N. I., Tomchuk Yu. Ya., “K teorii ortogonalnykh mnogochlenov na neskolkikh intervalakh”, Dokl. AN SSSR, 138:4 (1961), 743–746 | MR | Zbl

[34] Akhiezer N. I., “Kontinualnye analogi ortogonalnykh mnogochlenov na sisteme intervalov”, Dokl. AN SSSR, 141:2 (1961), 263–266 | MR | Zbl

[35] Suetin S. P., “Asimptotika polinomov Akhiezera i ravnomernaya skhodimost approksimatsii Pade dlya giperellipticheskikh funktsii”, UMN, 53:6 (1998), 267–268 | MR | Zbl

[36] Stahl H., “Extremal domains associated with an analytic function. I; II”, Complex Variables Theory Appl., 4 (1985), 311–324 ; 325–338 | MR | Zbl

[37] Stahl H., “Structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4 (1985), 339–354 | MR | Zbl

[38] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–180 | MR

[39] Peherstorfer F., “Minimal polynomials on several intervals with respect to the maximum norm. A survey”, Complex methods in approximation theory, eds. A. Martínez Finkelshtein, F. Marcellán, J. J. Moreno, Universidad de Almería, 1997, 137–160 | MR

[40] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[41] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960

[42] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR

[43] Krazer A., Lehrbuch der Thetafunktionen, XXIV, Chelsea Publishing Company, New York, 1970 | Zbl

[44] Gakhov F. D., Kraevye zadachi, Fizmatgiz, M., 1977 | MR | Zbl

[45] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965 | MR

[46] Nuttall J., “Pade polynomial asymptotics from a singular integral equation”, Constr. Approx., 6:2 (1990), 157–166 | DOI | MR | Zbl