@article{SM_2000_191_9_a4,
author = {S. P. Suetin},
title = {Uniform convergence of {Pad\'e} diagonal approximants for hyperelliptic functions},
journal = {Sbornik. Mathematics},
pages = {1339--1373},
year = {2000},
volume = {191},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a4/}
}
S. P. Suetin. Uniform convergence of Padé diagonal approximants for hyperelliptic functions. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1339-1373. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a4/
[1] Chebyshev P. L., Polnoe sobranie sochinenii, T. II, III, Izd-vo AN SSSR, M.–L., 1948 | MR
[2] Markov A. A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M., 1948 | MR
[3] Chebyshev P. L., “O nepreryvnykh drobyakh”, Uchenye zapiski Imp. Akademii Nauk, III (1855), S. 636–664. ; Полное собрание сочинений, Т. II, Изд-во АН СССР, М.–Л., 1948, 103–126 | MR
[4] Markov A. A., “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19 (1895), 93–104 | DOI | MR
[5] Gonchar A. A., “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97 (139) (1975), 607–629 | MR | Zbl
[6] Rakhmanov E. A., “O skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 104 (146):2 (1977), 271–291 | MR | Zbl
[7] Magnus A. P., “On optimal Padé-type cuts”, Ann. Numer. Math., 4:4 (1997), 435–449 | MR | Zbl
[8] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR
[9] Nuttall J., “Sets of minimal capacity, Padé approximations and the bubble problem”, Bifurcation phenomena in mathematical physics and related topics, eds. C. Bardos, D. Bessis, Reidel, Dordrecht, 1980, 185–201
[10] Dadfar M. B., Geer J. F., Andersen C. M., “Perturbation analysis of the limit cycle of the free van der Pol equation”, SIAM J. Appl. Math., 42:3 (1982), 678–693 | DOI | MR
[11] Andersen C. M., Geer J. F., “Power series expansions for the frequency and period of the limit cycle of the van der Pol equation”, SIAM J. Appl. Math., 44:5 (1984), 881–895 | DOI | MR | Zbl
[12] Karabut E. A., “Primenenie stepennykh ryadov po vremeni v zadache o dvizhenii tsilindricheskoi polosti v zhidkosti. III: Zamena peremennykh v stepennykh ryadakh”, Dinamika sploshnoi sredy, no. 81, 1987, 57–77 | MR | Zbl
[13] Andrianov I. V., “Application of Padé-approximants in perturbation methods”, Adv. Mech., 14:2 (1991), 3–25 | MR
[14] Cattapan G., Maglione E., From bound states to resonances: analytic continuation of the wave function, , 20 Jan 2000 E-print nucl-th/0001037
[15] Baker G. A., Jr., “Defects and the convergence of Padé approximants”, International Conference of Rational Approximations (Antwerpen, Belgium, June 6–11, 1999) (to appear) | MR
[16] Stahl H., “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse. Math. (6), Spec. Iss. (1996), 121–193 | MR | Zbl
[17] Stahl H., “Conjectures around Baker–Gammel–Willes conjecture”, J. Constr. Approx., 13 (1997), 287–292 | DOI | MR | Zbl
[18] Stahl H., “Spurious poles in Padé approximation”, J. Comput. Appl. Math., 99:1–2 (1998), 511–527 | DOI | MR | Zbl
[19] Gilewicz J., Approximants de Padé, Lecture Notes in Math., 667, Springer, Heidelberg, 1978 | MR | Zbl
[20] Gilewicz J., Pindor M., Padé approximants and noise: the case of geometric series, Technical report, Centre de Physique Théoretique, Marseille, 1997
[21] Dumas S., Sur le développement des fonctions elliptiques en fractions continues, Thesis, Zürich, 1908 | Zbl
[22] Nikishin E. M., “O skhodimosti diagonalnykh approksimatsii Pade dlya nekotorykh funktsii”, Matem. sb., 101 (143):2 (1976), 280–292 | MR | Zbl
[23] Nuttall J., Singh R. S., “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approx. Theory, 21 (1977), 1–42 | DOI | MR | Zbl
[24] Gonchar A. A., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 118 (160):4 (8) (1982), 535–556 | MR | Zbl
[25] Gonchar A. A., “O skhodimosti diagonalnykh approksimatsii Pade v sfericheskoi metrike”, Matematicheskie struktury. Vychislitelnaya matematika. Matematicheskoe modelirovanie, Trudy, posvyaschennye semidesyatiletiyu akademika L. Ilieva, Sofiya, 1984, 19–35
[26] Stahl H., “Orthogonal polynomials with complex valued weight function. I; II”, Constr. Approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl
[27] Nuttall J., “Asymptotics of diagonal Hermite–Pade polynomials”, J. Approx. Theory, 42 (1984), 299–386 | DOI | MR | Zbl
[28] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962
[29] Bernshtein S. N., Sobranie sochinenii, T. 1, Izd-vo AN SSSR, M., 1952
[30] Widom H., “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3 (1969), 127–232 | DOI | MR | Zbl
[31] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125 (167):2 (10) (1984), 231–258 | MR
[32] Akhiezer N. I., “Ob ortogonalnykh mnogochlenakh na neskolkikh intervalakh”, Dokl. AN SSSR, 134:1 (1960), 9–12 | MR | Zbl
[33] Akhiezer N. I., Tomchuk Yu. Ya., “K teorii ortogonalnykh mnogochlenov na neskolkikh intervalakh”, Dokl. AN SSSR, 138:4 (1961), 743–746 | MR | Zbl
[34] Akhiezer N. I., “Kontinualnye analogi ortogonalnykh mnogochlenov na sisteme intervalov”, Dokl. AN SSSR, 141:2 (1961), 263–266 | MR | Zbl
[35] Suetin S. P., “Asimptotika polinomov Akhiezera i ravnomernaya skhodimost approksimatsii Pade dlya giperellipticheskikh funktsii”, UMN, 53:6 (1998), 267–268 | MR | Zbl
[36] Stahl H., “Extremal domains associated with an analytic function. I; II”, Complex Variables Theory Appl., 4 (1985), 311–324 ; 325–338 | MR | Zbl
[37] Stahl H., “Structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4 (1985), 339–354 | MR | Zbl
[38] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–180 | MR
[39] Peherstorfer F., “Minimal polynomials on several intervals with respect to the maximum norm. A survey”, Complex methods in approximation theory, eds. A. Martínez Finkelshtein, F. Marcellán, J. J. Moreno, Universidad de Almería, 1997, 137–160 | MR
[40] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl
[41] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960
[42] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR
[43] Krazer A., Lehrbuch der Thetafunktionen, XXIV, Chelsea Publishing Company, New York, 1970 | Zbl
[44] Gakhov F. D., Kraevye zadachi, Fizmatgiz, M., 1977 | MR | Zbl
[45] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965 | MR
[46] Nuttall J., “Pade polynomial asymptotics from a singular integral equation”, Constr. Approx., 6:2 (1990), 157–166 | DOI | MR | Zbl