Uniform convergence of Pad\'e diagonal approximants for hyperelliptic functions
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1339-1373

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniform convergence of Padé diagonal approximants is studied for functions in some class that is a natural generalization of hyperelliptic functions. The study is based on Nuttall's approach, which consists in the analysis of a certain Riemann boundary-value problem on the corresponding hyperelliptic Riemann surface. In terms of the solution of this problem, a strong asymptotic formula is obtained for non-Hermitian orthogonal polynomials that are the denominators of the Padé approximants. Under some fairly general assumptions, which are formulated in terms of the periods of the complex Green's function corresponding to the problem and which hold in “general position”, a version of the Baker–Gammel–Willes conjecture is proved.
@article{SM_2000_191_9_a4,
     author = {S. P. Suetin},
     title = {Uniform convergence of {Pad\'e} diagonal approximants for hyperelliptic functions},
     journal = {Sbornik. Mathematics},
     pages = {1339--1373},
     publisher = {mathdoc},
     volume = {191},
     number = {9},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a4/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Uniform convergence of Pad\'e diagonal approximants for hyperelliptic functions
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1339
EP  - 1373
VL  - 191
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_9_a4/
LA  - en
ID  - SM_2000_191_9_a4
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Uniform convergence of Pad\'e diagonal approximants for hyperelliptic functions
%J Sbornik. Mathematics
%D 2000
%P 1339-1373
%V 191
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_9_a4/
%G en
%F SM_2000_191_9_a4
S. P. Suetin. Uniform convergence of Pad\'e diagonal approximants for hyperelliptic functions. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1339-1373. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a4/