Classification of Ric-semiparallel hypersurfaces in Euclidean spaces
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1323-1338 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete local classification and a geometric description are given for hypersurfaces with semiparallel Ricci tensor in Euclidean spaces.
@article{SM_2000_191_9_a3,
     author = {V. A. Mirzoyan},
     title = {Classification of {Ric-semiparallel} hypersurfaces in {Euclidean} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1323--1338},
     year = {2000},
     volume = {191},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a3/}
}
TY  - JOUR
AU  - V. A. Mirzoyan
TI  - Classification of Ric-semiparallel hypersurfaces in Euclidean spaces
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1323
EP  - 1338
VL  - 191
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_9_a3/
LA  - en
ID  - SM_2000_191_9_a3
ER  - 
%0 Journal Article
%A V. A. Mirzoyan
%T Classification of Ric-semiparallel hypersurfaces in Euclidean spaces
%J Sbornik. Mathematics
%D 2000
%P 1323-1338
%V 191
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2000_191_9_a3/
%G en
%F SM_2000_191_9_a3
V. A. Mirzoyan. Classification of Ric-semiparallel hypersurfaces in Euclidean spaces. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1323-1338. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a3/

[1] Mirzoyan V. A., “Ric-polusimmetricheskie podmnogoobraziya”, Itogi nauki i tekhn. Problemy geometrii, 23, VINITI, M., 1991, 29–66 | MR

[2] Mirzoyan V. A., “Strukturnye teoremy dlya rimanovykh Ric-polusimmetricheskikh prostranstv”, Izv. vuzov. Ser. matem., 1992, no. 6, 80–89 | MR | Zbl

[3] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981

[4] Fialkow A., “Hypersurfaces of spaces of constant curvature”, Ann. of Math. (2), 39 (1938), 762–785 | DOI | MR | Zbl

[5] Ryan P. J., “Homogeneity and some curvature conditions for hypersurfaces”, Tôhoku Math. J. (2), 21 (1969), 363–388 | DOI | MR | Zbl

[6] Ryan P. J., “Hypersurfaces with parallel Ricci tensor”, Osaka J. Math., 8:2 (1971), 251–259 | MR | Zbl

[7] Nomizu K., “On hypersurfaces satisfying a certain condition on the curvature tensor”, Tôhoku Math. J., 20:1 (1968), 46–59 | DOI | MR | Zbl

[8] Szabo Z. I., “Classification and construction of complete hypersurfaces satisfying $R(X,Y)\cdot R=0$”, Acta Sci. Math. (Szeged), 47:3–4 (1984), 321–348 | MR | Zbl

[9] Deprez J., “Semi-parallel hypersurfaces”, Rend. Sem. Mat. Univ. Politec. Torino, 44:2 (1986), 303–316 | MR | Zbl

[10] Lumiste Yu. G., “Polusimmetricheskie podmnogoobraziya”, Itogi nauki i tekhn. Problemy geometrii, 23, VINITI, M., 1991, 3–28 | MR

[11] Lumiste Ü., “Symmetric orbits of the orthogonal Veronese actions and their second order envelopes”, Results Math., 27 (1995), 284–301 | MR | Zbl

[12] Lumiste Ü., “Semi-parallel submanifolds of cylindrical or toroidal Segre type”, Proc. Estonian Acad. Sci. Fhys. Math., 45:2/3 (1996), 161–177 | MR | Zbl

[13] Lumiste Ü., “Semi-parallel submanifolds as some immersed fibred bundles with flat connections”, Geom. and Topology of Submanifolds, VIII (1996), 236–244 | MR | Zbl

[14] Mirzoyan V. A., “$S$-semi-parallel submanifolds in spaces of constant curvature as the envelopes of $s$-parallel submanifolds”, Izv. Nats. Akad. Nauk Armenii. Matematika, 31:5 (1996), 37–48 | MR | Zbl

[15] Mirzoyan V. A., “On generalizations of Ü. Lumiste theorem on semi-parallel submanifolds”, Izv. Nats. Akad. Nauk Armenii. Matematika, 33:1 (1998), 48–58 | MR | Zbl

[16] Chern S. S., Kuiper N., “Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space”, Ann. of Math. (2), 56:3 (1952), 422–430 | DOI | MR

[17] Szabo Z. I., “Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. I: The local version”, J. Differential Geom., 17 (1982), 531–582 | MR | Zbl

[18] Shirokov P. A., Izbrannye raboty po geometrii, KGU, Kazan, 1966 | MR

[19] Kruchkovich G. I., “Ob odnom klasse rimanovykh prostranstv”, Trudy seminara po vektornomu i tenzornomu analizu, 11, MGU, M., 1961, 103–128

[20] Bishop R., O'Neill B., “Manifolds of negative curvature”, Trans. Amer. Math. Soc., 145 (1969), 1–49 | DOI | MR | Zbl

[21] Mirzoyan V. A., “Konusy s mnogomernymi obrazuyuschimi nad einshteinovymi prostranstvami”, Dokl. NAN Armenii, 98:4 (1998), 265–268 | MR

[22] Mirzoyan V. A., “Podmnogoobraziya s kommutiruyuschim normalnym vektornym polem”, Itogi nauki i tekhn. Problemy geometrii, 14, VINITI, M., 1983, 73–100 | MR

[23] Moor J. D., “Isometric immersions of Riemannian products”, J. Differential Geom., 5:1–2 (1971), 159–168 | MR | Zbl