Evolution equations with monotone operator and functional non-linearity at the time derivative
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1301-1322

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for the solubility of the so-called doubly non-linear equations $$ Au+\frac\partial{\partial t}Bu=f, \qquad u(0)=u_0, $$ are investigated. Here $A$ is a monotone operator induced by a differential expression containing higher-order partial derivatives and $B$ is an operator induced by a monotone function. A theorem on the existence of a solution is proved. The method of monotone operators is used in combination with the method of compact operators. Examples of applications to parabolic differential equations are presented.
@article{SM_2000_191_9_a2,
     author = {G. I. Laptev},
     title = {Evolution equations with monotone operator and functional non-linearity at the time derivative},
     journal = {Sbornik. Mathematics},
     pages = {1301--1322},
     publisher = {mathdoc},
     volume = {191},
     number = {9},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a2/}
}
TY  - JOUR
AU  - G. I. Laptev
TI  - Evolution equations with monotone operator and functional non-linearity at the time derivative
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1301
EP  - 1322
VL  - 191
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_9_a2/
LA  - en
ID  - SM_2000_191_9_a2
ER  - 
%0 Journal Article
%A G. I. Laptev
%T Evolution equations with monotone operator and functional non-linearity at the time derivative
%J Sbornik. Mathematics
%D 2000
%P 1301-1322
%V 191
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_9_a2/
%G en
%F SM_2000_191_9_a2
G. I. Laptev. Evolution equations with monotone operator and functional non-linearity at the time derivative. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1301-1322. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a2/