Spectral properties of an operator of Riesz potential type and its product with the Bergman projection on a bounded domain
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1279-1300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An exact asymptotic formula for the singular values of the product of an operator of Riesz potential type and the Bergman projection on a bounded domain is obtained. It is shown that these singular values determine the length of the boundary of the domain. It was known before that the spectrum of the operator of Riesz potential type determines the area of the domain.
@article{SM_2000_191_9_a1,
     author = {M. R. Dostanic},
     title = {Spectral properties of an~operator of {Riesz} potential type and its product with {the~Bergman} projection on a~bounded domain},
     journal = {Sbornik. Mathematics},
     pages = {1279--1300},
     year = {2000},
     volume = {191},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a1/}
}
TY  - JOUR
AU  - M. R. Dostanic
TI  - Spectral properties of an operator of Riesz potential type and its product with the Bergman projection on a bounded domain
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1279
EP  - 1300
VL  - 191
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_9_a1/
LA  - en
ID  - SM_2000_191_9_a1
ER  - 
%0 Journal Article
%A M. R. Dostanic
%T Spectral properties of an operator of Riesz potential type and its product with the Bergman projection on a bounded domain
%J Sbornik. Mathematics
%D 2000
%P 1279-1300
%V 191
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2000_191_9_a1/
%G en
%F SM_2000_191_9_a1
M. R. Dostanic. Spectral properties of an operator of Riesz potential type and its product with the Bergman projection on a bounded domain. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1279-1300. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a1/

[1] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[2] Widom H., “Asymptotic behavior of the eigenvalues of certain integral equations”, Trans. Amer. Math. Soc., 109 (1963), 278–295 | DOI | MR | Zbl

[3] Dostanić M., “Spectral properties of the Cauchy operator and its product with the Bergman projection on a bounded domain”, Proc. London Math. Soc. (to appear)

[4] Arazy J., Khavinson D., “Spectral estimates of Cauchy's transform in $L^2(\Omega)$”, Integral Equations Operator Theory, 15 (1992), 901–919 | DOI | MR | Zbl

[5] Anderson J. M., Khavinson D., Lomonosov V., “Spectral properties of some integral operators arising in potential theory”, Quart. J. Math. Oxford Ser. (2), 43 (1992), 387–407 | MR | Zbl

[6] Dostanić M., “The properties of the Cauchy transform on a bounded domain”, J. Operator Theory, 36 (1996), 233–247 | MR | Zbl

[7] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[8] Range R. M., Holomorphic functions and integral representations in several complex variables, Springer-Verlag, New York, 1986 | MR

[9] Samko S. G., Kilbas A. A., Marichev O. I., Drobnye integraly i proizvodnye i nekotorye ikh primeneniya, Minsk, 1987

[10] Parfenov O. G., “Otsenki singulyarnykh chisel integralnykh operatorov s analiticheskimi yadrami”, Problemy matematicheskogo analiza. Kraevye zadachi. Spektralnaya teoriya, 1979, no. 7, 178–188 | MR | Zbl

[11] Birman M. Sh., Solomyak M. Z., “Otsenki singulyarnykh chisel integralnykh operatorov”, UMN, 32:1 (1977), 17–84 | MR | Zbl

[12] Paraska V. V., “Ob asimptotike sobstvennykh i singulyarnykh chisel lineinykh operatorov, povyshayuschikh gladkost”, Matem. sb., 68:4 (1965), 623–631 | MR | Zbl