Spectral properties of an~operator of Riesz potential type and its product with the~Bergman projection on a~bounded domain
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1279-1300

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact asymptotic formula for the singular values of the product of an operator of Riesz potential type and the Bergman projection on a bounded domain is obtained. It is shown that these singular values determine the length of the boundary of the domain. It was known before that the spectrum of the operator of Riesz potential type determines the area of the domain.
@article{SM_2000_191_9_a1,
     author = {M. R. Dostanic},
     title = {Spectral properties of an~operator of {Riesz} potential type and its product with {the~Bergman} projection on a~bounded domain},
     journal = {Sbornik. Mathematics},
     pages = {1279--1300},
     publisher = {mathdoc},
     volume = {191},
     number = {9},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a1/}
}
TY  - JOUR
AU  - M. R. Dostanic
TI  - Spectral properties of an~operator of Riesz potential type and its product with the~Bergman projection on a~bounded domain
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1279
EP  - 1300
VL  - 191
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_9_a1/
LA  - en
ID  - SM_2000_191_9_a1
ER  - 
%0 Journal Article
%A M. R. Dostanic
%T Spectral properties of an~operator of Riesz potential type and its product with the~Bergman projection on a~bounded domain
%J Sbornik. Mathematics
%D 2000
%P 1279-1300
%V 191
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_9_a1/
%G en
%F SM_2000_191_9_a1
M. R. Dostanic. Spectral properties of an~operator of Riesz potential type and its product with the~Bergman projection on a~bounded domain. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1279-1300. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a1/