On the index of $G$-spaces
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1259-1277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With a $G$-space, where $G$ is a compact Lie group, one can associate an ideal in the cohomology ring of the classifying space for $G$. It is called the ideal-valued index of the $G$-space. A filtration of the ideal-valued index that arises in a natural way from the Leray spectral sequence is considered. Properties of the index with filtration are studied and numerical indices are introduced. These indices are convenient for estimates of the $G$-category and the study of the set of critical points of a $G$-invariant functional defined on a manifold. A generalization of the Bourgin–Yang theorem for the index with filtration is proved. This result is used for estimates of the index of the space of partial coincidences for a map of a space with $p$-torus action in a Euclidean space.
@article{SM_2000_191_9_a0,
     author = {A. Yu. Volovikov},
     title = {On the index of $G$-spaces},
     journal = {Sbornik. Mathematics},
     pages = {1259--1277},
     year = {2000},
     volume = {191},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a0/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - On the index of $G$-spaces
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1259
EP  - 1277
VL  - 191
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_9_a0/
LA  - en
ID  - SM_2000_191_9_a0
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T On the index of $G$-spaces
%J Sbornik. Mathematics
%D 2000
%P 1259-1277
%V 191
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2000_191_9_a0/
%G en
%F SM_2000_191_9_a0
A. Yu. Volovikov. On the index of $G$-spaces. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1259-1277. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a0/

[1] Yang C. T., “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobo and Dyson, I”, Ann. of Math., 60:2 (1954), 262–282 | DOI | MR | Zbl

[2] Shvarts A. S., “Nekotorye otsenki roda topologicheskogo prostranstva v smysle Krasnoselskogo”, UMN, 12:4 (1957), 209–214 | MR | Zbl

[3] Shvarts A. S., “Rod rassloennogo prostranstva”, Tr. MMO, 11, URSS, M., 1962, 99–126 | MR | Zbl

[4] Conner P. E., Floyd E. E., “Fixed point free involutions and equivariant maps”, Bull. Amer. Math. Soc. (N. S.), 66 (1960), 416–441 | DOI | MR | Zbl

[5] Fadell E., Husseini S., “Relative cohomological index theories”, Adv. Math., 64 (1987), 1–31 | DOI | MR | Zbl

[6] Fadell E., Husseini S., “An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems”, Ergodic theory and dynamic systems, 8. Spec. Issue (1988), 259–268 | MR

[7] Cohen F., Lusk E. L., “Configuration-like spaces and the Borsuk–Ulam theorem”, Proc. Amer. Math. Soc., 56 (1976), 313–317 | DOI | MR | Zbl

[8] Hsiang W. Y., Cohomology theory of topological transformation groups, Springer-Verlag, Berlin, 1975 | MR

[9] Volovikov A. Yu., “Teorema tipa Burzhena–Yanga dlya ${\mathbb Z}^n_p$-deistviya”, Matem. sb., 183:7 (1992), 115–144 | MR

[10] Chang T., Skjelbred T., “Group actions on Poincaré duality spaces”, Bull. Amer. Math. Soc. (N. S.), 78 (1972), 1024–1026 | DOI | MR | Zbl

[11] Bredon G., Sheaf theory, McGraw-Hill, New York, 1988 | MR

[12] Godement R., Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958 | MR | Zbl

[13] Clapp M., Puppe D., “Critical point theory with symmetries”, J. Reine Angew. Math., 418 (1991), 1–29 | MR | Zbl

[14] Marzantowicz W., “Borsuk–Ulam theorem for any compact Lie group”, J. London Math. Soc. (2), 49:2 (1994), 195–208 | MR | Zbl

[15] Volovikov A. Yu., “Ob otobrazheniyakh mnogoobrazii Shtifelya so svobodnym $\mathbb Z_p^n$-deistviem v mnogoobraziya”, UMN, 47:6 (1992), 205–206 | MR

[16] Zvyagin V. G., “Vychislenie koindeksa ekvivariantnogo fredgolmova otobrazheniya”, Trudy NII matematiki VGU. Voronezh, 15 (1974), 36–43

[17] Daccach J. A., “Nonexistence of equivariant degree one maps”, Proc. Amer. Math. Soc., 101:3 (1992), 530–532 | DOI | MR

[18] Makeev V. V., “Zadacha Knastera i pochti sfericheskie secheniya”, Matem. sb., 180:3 (1989), 424–431 | Zbl

[19] Volovikov A. Yu., “O posloinykh $G$-otobrazheniyakh”, UMN, 51:3 (1996), 189–190 | MR | Zbl

[20] Dold A., “Parametrized Borsuk–Ulam theorems”, Comment. Math. Helv., 63 (1988), 275–285 | DOI | MR | Zbl

[21] Nakaoka M., “Parametrized Borsuk–Ulam theorems and characteristic polinomials”, Lecture Notes in Math., 1411, 1989, 155–170 | MR | Zbl

[22] Sarkaria K. S., “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl

[23] Sarkaria K. S., “A generalized Kneser conjecture”, J. Combin. Theory. Ser. B, 49 (1990), 236–240 | DOI | MR | Zbl

[24] Volovikov A. Yu., “K teoreme van Kampena–Floresa”, Matem. zametki, 59:5 (1996), 663–670 | MR | Zbl

[25] Bogatyi S. A., “Tsvetnaya teorema Tverberga”, Vestnik MGU. Ser. 1. Matem., mekh., 1999, no. 3, 14–19 | MR | Zbl

[26] Bogatyi S. A., “Geometriya otobrazhenii v evklidovo prostranstvo”, UMN, 53:5 (1998), 27–56 | MR | Zbl

[27] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR

[28] Fadell E., “The equivariant Ljusternik–Schnirelmann method for invariant functionals and relative cohomological index theories”, Métodes topologiques en analyse non linéare, Sémin. Math. Super., Semin. Sci. OTAN, NATO Adv. Study Inst., 95, Montreal, 1985, 41–70 | MR | Zbl

[29] Marzantowicz W., “A $G$-Lusternik–Schnirelman category of space with an action of a compact Lie group”, Topology, 28:4 (1989), 403–412 | DOI | MR | Zbl