On the index of $G$-spaces
Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1259-1277

Voir la notice de l'article provenant de la source Math-Net.Ru

With a $G$-space, where $G$ is a compact Lie group, one can associate an ideal in the cohomology ring of the classifying space for $G$. It is called the ideal-valued index of the $G$-space. A filtration of the ideal-valued index that arises in a natural way from the Leray spectral sequence is considered. Properties of the index with filtration are studied and numerical indices are introduced. These indices are convenient for estimates of the $G$-category and the study of the set of critical points of a $G$-invariant functional defined on a manifold. A generalization of the Bourgin–Yang theorem for the index with filtration is proved. This result is used for estimates of the index of the space of partial coincidences for a map of a space with $p$-torus action in a Euclidean space.
@article{SM_2000_191_9_a0,
     author = {A. Yu. Volovikov},
     title = {On the index of $G$-spaces},
     journal = {Sbornik. Mathematics},
     pages = {1259--1277},
     publisher = {mathdoc},
     volume = {191},
     number = {9},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_9_a0/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - On the index of $G$-spaces
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1259
EP  - 1277
VL  - 191
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_9_a0/
LA  - en
ID  - SM_2000_191_9_a0
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T On the index of $G$-spaces
%J Sbornik. Mathematics
%D 2000
%P 1259-1277
%V 191
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_9_a0/
%G en
%F SM_2000_191_9_a0
A. Yu. Volovikov. On the index of $G$-spaces. Sbornik. Mathematics, Tome 191 (2000) no. 9, pp. 1259-1277. http://geodesic.mathdoc.fr/item/SM_2000_191_9_a0/