Asymptotic behaviour of the~Lebesgue constants of periodic interpolation splines with equidistant nodes
Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1233-1242

Voir la notice de l'article provenant de la source Math-Net.Ru

Associated with each continuous function $f$ of period 1 is the periodic spline $s_{r,n}(f)$ that has degree $r$, defect 1, nodes at the points $x_i=i/n$, $i=0,1,\dots,n-1$ and that interpolates $f$ at these points for $r$ odd and at the mid-points of the intervals $[x_i,x_{i+1}]$ for $r$ even. For the corresponding Lebesgue constants $L_{r,n}$, that is the norms of the operators $f(x)\to s_{r,n}(f)$ from $C$ to $C$, the asymptotic formula $$ L_{r,n}=\frac2\pi\log\min(r,n)+O(1), $$ is established, which holds uniformly in $r$ and $n$.
@article{SM_2000_191_8_a5,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {Asymptotic behaviour of {the~Lebesgue} constants of periodic interpolation splines with equidistant nodes},
     journal = {Sbornik. Mathematics},
     pages = {1233--1242},
     publisher = {mathdoc},
     volume = {191},
     number = {8},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_8_a5/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
TI  - Asymptotic behaviour of the~Lebesgue constants of periodic interpolation splines with equidistant nodes
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1233
EP  - 1242
VL  - 191
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_8_a5/
LA  - en
ID  - SM_2000_191_8_a5
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%T Asymptotic behaviour of the~Lebesgue constants of periodic interpolation splines with equidistant nodes
%J Sbornik. Mathematics
%D 2000
%P 1233-1242
%V 191
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_8_a5/
%G en
%F SM_2000_191_8_a5
Yu. N. Subbotin; S. A. Telyakovskii. Asymptotic behaviour of the~Lebesgue constants of periodic interpolation splines with equidistant nodes. Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1233-1242. http://geodesic.mathdoc.fr/item/SM_2000_191_8_a5/