Asymptotic behaviour of the~Lebesgue constants of periodic interpolation splines with equidistant nodes
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1233-1242
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Associated with each continuous function $f$ of period 1 is the periodic spline $s_{r,n}(f)$  that has degree $r$, defect 1, nodes at the points $x_i=i/n$, $i=0,1,\dots,n-1$ and that interpolates $f$ at these points for $r$ odd and at the mid-points of the intervals $[x_i,x_{i+1}]$ for $r$ even.
For the corresponding Lebesgue constants $L_{r,n}$, that is the norms of the operators $f(x)\to s_{r,n}(f)$ from $C$ to $C$, the asymptotic formula 
$$
L_{r,n}=\frac2\pi\log\min(r,n)+O(1),
$$
is established, which holds uniformly in $r$ and $n$.
			
            
            
            
          
        
      @article{SM_2000_191_8_a5,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {Asymptotic behaviour of {the~Lebesgue} constants of periodic interpolation splines with equidistant nodes},
     journal = {Sbornik. Mathematics},
     pages = {1233--1242},
     publisher = {mathdoc},
     volume = {191},
     number = {8},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_8_a5/}
}
                      
                      
                    TY - JOUR AU - Yu. N. Subbotin AU - S. A. Telyakovskii TI - Asymptotic behaviour of the~Lebesgue constants of periodic interpolation splines with equidistant nodes JO - Sbornik. Mathematics PY - 2000 SP - 1233 EP - 1242 VL - 191 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_8_a5/ LA - en ID - SM_2000_191_8_a5 ER -
%0 Journal Article %A Yu. N. Subbotin %A S. A. Telyakovskii %T Asymptotic behaviour of the~Lebesgue constants of periodic interpolation splines with equidistant nodes %J Sbornik. Mathematics %D 2000 %P 1233-1242 %V 191 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2000_191_8_a5/ %G en %F SM_2000_191_8_a5
Yu. N. Subbotin; S. A. Telyakovskii. Asymptotic behaviour of the~Lebesgue constants of periodic interpolation splines with equidistant nodes. Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1233-1242. http://geodesic.mathdoc.fr/item/SM_2000_191_8_a5/
