@article{SM_2000_191_8_a3,
author = {A. Yu. Savin and B. Yu. Sternin},
title = {Elliptic operators in odd subspaces},
journal = {Sbornik. Mathematics},
pages = {1191--1213},
year = {2000},
volume = {191},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_8_a3/}
}
A. Yu. Savin; B. Yu. Sternin. Elliptic operators in odd subspaces. Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1191-1213. http://geodesic.mathdoc.fr/item/SM_2000_191_8_a3/
[1] Savin A. Yu., Sternin B. Yu., “Ellipticheskie operatory v chetnykh podprostranstvakh”, Matem. sb., 190:8 (1999), 125–160 | MR | Zbl
[2] Gilkey P. B., “The eta invariant of even order operators”, Proc. 3rd Internat. Symp. (Peniscola, Spain, 1988), Differential geometry, Lecture Notes in Math., 1410, 1989, 202–211 | DOI | MR | Zbl
[3] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry, II”, Math. Proc. Cambridge Philos. Soc., 78 (1976), 405–432 | DOI | MR
[4] Gilkey P. B., “The eta invariant for even dimensional $\textPin^c$ manifolds”, Adv. Math., 58 (1985), 243–284 | DOI | MR | Zbl
[5] Bahri A. P., Gilkey P. B., “The eta invariant, $\textPin^c$ bordism, and equivariant $\textSpin^c$ bordism for cyclic 2-groups”, Pacific J. Math., 128:1 (1987), 1–24 | MR | Zbl
[6] Gilkey P. B., “The eta invariant of $\textPin$ manifolds with cyclic fundamental groups”, Periodica Math. Hungarica, 36 (1998), 139–170 | DOI | MR | Zbl
[7] Stolz S., “Exotic structures on 4-manifolds detected by spectral invariants”, Invent. Math., 94 (1988), 147–162 | DOI | MR | Zbl
[8] Liu K., Zhang W., “Elliptic genus and $\eta$-invariant”, Internat. Math. Res. Notices, 8 (1994), 319–328 | DOI | MR
[9] Liu K., “Modular invariance and characteristic numbers”, Comm. Math. Phys., 174:1 (1995), 29–41 | DOI | MR
[10] Savin A. Yu., Sternin B. Yu., “On the index of boundary value problems for general elliptic operators”, Proc. Conf. “Operator Algebras and Asymptotics on Manifolds with Singularities” (Warsaw, 1999), 30–32
[11] Savin A. Yu., Sternin B. Yu., Elliptic operators in odd subspaces, Preprint No 99/11, Juni 1999, Univ. Potsdam, Institut für Mathematik, Potsdam | MR
[12] Gilkey P. B., “The eta invariant and non-singular bilinear products on $\mathbb R^n$”, Canad. Math. Bull., 30 (1987), 147–154 | MR | Zbl
[13] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry, I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl
[14] Sullivan D., Geometricheskaya topologiya. Lokalizatsiya, periodichnost i simmetriya Galua, Mir, M., 1975 | MR | Zbl
[15] Baum P., Douglas R. G., “$K$-homology and index theory”, Operator algebras and applications, Proc. Symp. Pure Math., Part 1 (Kingston/Ont. 1980), 38, 1982, 117–173 | MR | Zbl
[16] Wojciechowski K., “A note on the space of pseudodifferential projections with the same principal symbol”, J. Operator Theory, 15:2 (1986), 207–216 | MR | Zbl
[17] Epstein C., Melrose R., “Contact degree and the index of Fourier integral operators”, Math. Res. Lett., 5:3 (1998), 363–381 | MR | Zbl
[18] Husemoller D., Fiber bundles, McGrow-Hill, New York, 1966 | Zbl
[19] Sternin B. Yu., Shatalov V. E., Shultse B.-V., “Ob obschikh kraevykh zadachakh dlya ellipticheskikh uravnenii”, Matem. sb., 189:10 (1998), 145–160 | MR | Zbl
[20] Atiyah M. F., Bott R., “The index problem for manifolds with boundary”, Bombay Colloquium on Differential Analysis, Oxford Univ. Press, Oxford, 1964, 175–186 | MR
[21] Nazaikinskii V. E., Sternin B. Yu., Shatalov V. E., Shultse B.-V., “Spektralnye kraevye zadachi i ellipticheskie uravneniya na mnogoobraziyakh s osobennostyami”, Differents. uravneniya, 34:5 (1998), 695–708 | MR | Zbl
[22] Rempel S., Schulze B.-W., Index theory of elliptic boundary problems, Akademie-Verlag, Berlin, 1982 | MR
[23] Savin A. Yu., Sternin B. Yu., Shultse B.-V., “Ob invariantnykh formulakh indeksa spektralnykh kraevykh zadach”, Differents. uravneniya, 35:5 (1999), 705–714 | MR | Zbl
[24] Atiyah M. F., $K$-Theory, Addison-Wesley, Cambridge, 1989 | MR | Zbl
[25] Kuiper N. H., “The homotopy type of the unitary group of Hilbert spaces”, Topology, 3 (1965), 19–30 | DOI | MR | Zbl