Elliptic operators in odd subspaces
Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1191-1213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An elliptic theory is constructed for operators acting in subspaces defined by means of odd pseudodifferential projections. Index formulae for operators on compact manifolds without boundary and for general boundary-value problems are obtained. A connection with Gilkey's theory of $\eta$-invariants is established.
@article{SM_2000_191_8_a3,
     author = {A. Yu. Savin and B. Yu. Sternin},
     title = {Elliptic operators in odd subspaces},
     journal = {Sbornik. Mathematics},
     pages = {1191--1213},
     year = {2000},
     volume = {191},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_8_a3/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - Elliptic operators in odd subspaces
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1191
EP  - 1213
VL  - 191
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_8_a3/
LA  - en
ID  - SM_2000_191_8_a3
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%T Elliptic operators in odd subspaces
%J Sbornik. Mathematics
%D 2000
%P 1191-1213
%V 191
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2000_191_8_a3/
%G en
%F SM_2000_191_8_a3
A. Yu. Savin; B. Yu. Sternin. Elliptic operators in odd subspaces. Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1191-1213. http://geodesic.mathdoc.fr/item/SM_2000_191_8_a3/

[1] Savin A. Yu., Sternin B. Yu., “Ellipticheskie operatory v chetnykh podprostranstvakh”, Matem. sb., 190:8 (1999), 125–160 | MR | Zbl

[2] Gilkey P. B., “The eta invariant of even order operators”, Proc. 3rd Internat. Symp. (Peniscola, Spain, 1988), Differential geometry, Lecture Notes in Math., 1410, 1989, 202–211 | DOI | MR | Zbl

[3] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry, II”, Math. Proc. Cambridge Philos. Soc., 78 (1976), 405–432 | DOI | MR

[4] Gilkey P. B., “The eta invariant for even dimensional $\textPin^c$ manifolds”, Adv. Math., 58 (1985), 243–284 | DOI | MR | Zbl

[5] Bahri A. P., Gilkey P. B., “The eta invariant, $\textPin^c$ bordism, and equivariant $\textSpin^c$ bordism for cyclic 2-groups”, Pacific J. Math., 128:1 (1987), 1–24 | MR | Zbl

[6] Gilkey P. B., “The eta invariant of $\textPin$ manifolds with cyclic fundamental groups”, Periodica Math. Hungarica, 36 (1998), 139–170 | DOI | MR | Zbl

[7] Stolz S., “Exotic structures on 4-manifolds detected by spectral invariants”, Invent. Math., 94 (1988), 147–162 | DOI | MR | Zbl

[8] Liu K., Zhang W., “Elliptic genus and $\eta$-invariant”, Internat. Math. Res. Notices, 8 (1994), 319–328 | DOI | MR

[9] Liu K., “Modular invariance and characteristic numbers”, Comm. Math. Phys., 174:1 (1995), 29–41 | DOI | MR

[10] Savin A. Yu., Sternin B. Yu., “On the index of boundary value problems for general elliptic operators”, Proc. Conf. “Operator Algebras and Asymptotics on Manifolds with Singularities” (Warsaw, 1999), 30–32

[11] Savin A. Yu., Sternin B. Yu., Elliptic operators in odd subspaces, Preprint No 99/11, Juni 1999, Univ. Potsdam, Institut für Mathematik, Potsdam | MR

[12] Gilkey P. B., “The eta invariant and non-singular bilinear products on $\mathbb R^n$”, Canad. Math. Bull., 30 (1987), 147–154 | MR | Zbl

[13] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry, I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[14] Sullivan D., Geometricheskaya topologiya. Lokalizatsiya, periodichnost i simmetriya Galua, Mir, M., 1975 | MR | Zbl

[15] Baum P., Douglas R. G., “$K$-homology and index theory”, Operator algebras and applications, Proc. Symp. Pure Math., Part 1 (Kingston/Ont. 1980), 38, 1982, 117–173 | MR | Zbl

[16] Wojciechowski K., “A note on the space of pseudodifferential projections with the same principal symbol”, J. Operator Theory, 15:2 (1986), 207–216 | MR | Zbl

[17] Epstein C., Melrose R., “Contact degree and the index of Fourier integral operators”, Math. Res. Lett., 5:3 (1998), 363–381 | MR | Zbl

[18] Husemoller D., Fiber bundles, McGrow-Hill, New York, 1966 | Zbl

[19] Sternin B. Yu., Shatalov V. E., Shultse B.-V., “Ob obschikh kraevykh zadachakh dlya ellipticheskikh uravnenii”, Matem. sb., 189:10 (1998), 145–160 | MR | Zbl

[20] Atiyah M. F., Bott R., “The index problem for manifolds with boundary”, Bombay Colloquium on Differential Analysis, Oxford Univ. Press, Oxford, 1964, 175–186 | MR

[21] Nazaikinskii V. E., Sternin B. Yu., Shatalov V. E., Shultse B.-V., “Spektralnye kraevye zadachi i ellipticheskie uravneniya na mnogoobraziyakh s osobennostyami”, Differents. uravneniya, 34:5 (1998), 695–708 | MR | Zbl

[22] Rempel S., Schulze B.-W., Index theory of elliptic boundary problems, Akademie-Verlag, Berlin, 1982 | MR

[23] Savin A. Yu., Sternin B. Yu., Shultse B.-V., “Ob invariantnykh formulakh indeksa spektralnykh kraevykh zadach”, Differents. uravneniya, 35:5 (1999), 705–714 | MR | Zbl

[24] Atiyah M. F., $K$-Theory, Addison-Wesley, Cambridge, 1989 | MR | Zbl

[25] Kuiper N. H., “The homotopy type of the unitary group of Hilbert spaces”, Topology, 3 (1965), 19–30 | DOI | MR | Zbl