Parametric excitation of high-mode oscillations for a~non-linear telegraph equation
Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1147-1169

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of parametric excitation of high-mode oscillations is solved for a non-linear telegraph equation with a parametric external excitation and small diffusion. The equation is considered on a finite (spatial) interval with Neumann boundary conditions. It is shown that under a proper choice of parameters of the external excitation this boundary-value problem can have arbitrarily many exponentially stable solutions that are periodic in time and rapidly oscillate with respect to the spatial variable.
@article{SM_2000_191_8_a1,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {Parametric excitation of high-mode oscillations for a~non-linear telegraph equation},
     journal = {Sbornik. Mathematics},
     pages = {1147--1169},
     publisher = {mathdoc},
     volume = {191},
     number = {8},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_8_a1/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Parametric excitation of high-mode oscillations for a~non-linear telegraph equation
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1147
EP  - 1169
VL  - 191
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_8_a1/
LA  - en
ID  - SM_2000_191_8_a1
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Parametric excitation of high-mode oscillations for a~non-linear telegraph equation
%J Sbornik. Mathematics
%D 2000
%P 1147-1169
%V 191
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_8_a1/
%G en
%F SM_2000_191_8_a1
A. Yu. Kolesov; N. Kh. Rozov. Parametric excitation of high-mode oscillations for a~non-linear telegraph equation. Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1147-1169. http://geodesic.mathdoc.fr/item/SM_2000_191_8_a1/