Parametric excitation of high-mode oscillations for a~non-linear telegraph equation
Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1147-1169
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of parametric excitation of high-mode oscillations is solved for a non-linear telegraph equation with a parametric external excitation and small diffusion. The equation is considered on a finite (spatial) interval with Neumann boundary conditions. It is shown that under a proper choice of parameters of the external excitation this boundary-value problem can have arbitrarily many exponentially stable solutions that are periodic in time and rapidly oscillate with respect to the spatial variable.
@article{SM_2000_191_8_a1,
author = {A. Yu. Kolesov and N. Kh. Rozov},
title = {Parametric excitation of high-mode oscillations for a~non-linear telegraph equation},
journal = {Sbornik. Mathematics},
pages = {1147--1169},
publisher = {mathdoc},
volume = {191},
number = {8},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_8_a1/}
}
TY - JOUR AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Parametric excitation of high-mode oscillations for a~non-linear telegraph equation JO - Sbornik. Mathematics PY - 2000 SP - 1147 EP - 1169 VL - 191 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_8_a1/ LA - en ID - SM_2000_191_8_a1 ER -
A. Yu. Kolesov; N. Kh. Rozov. Parametric excitation of high-mode oscillations for a~non-linear telegraph equation. Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1147-1169. http://geodesic.mathdoc.fr/item/SM_2000_191_8_a1/