Massey products in symplectic manifolds
Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1107-1146

Voir la notice de l'article provenant de la source Math-Net.Ru

Massey products in symplectic manifolds are studied. A general method for the construction of symplectic manifolds with non-trivial Massey products of arbitrarily high order is put forward. This method uses symplectic blow-up. The authors find conditions guaranteeing that the symplectic blow-up of $X$ along a submanifold $Y$ inherits non-trivial Massey products from $X$ and $Y$. As a result, a general construction of non-formal symplectic manifolds by means of symplectic blow-ups is developed.
@article{SM_2000_191_8_a0,
     author = {I. K. Babenko and I. A. Taimanov},
     title = {Massey products in symplectic manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1107--1146},
     publisher = {mathdoc},
     volume = {191},
     number = {8},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_8_a0/}
}
TY  - JOUR
AU  - I. K. Babenko
AU  - I. A. Taimanov
TI  - Massey products in symplectic manifolds
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1107
EP  - 1146
VL  - 191
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_8_a0/
LA  - en
ID  - SM_2000_191_8_a0
ER  - 
%0 Journal Article
%A I. K. Babenko
%A I. A. Taimanov
%T Massey products in symplectic manifolds
%J Sbornik. Mathematics
%D 2000
%P 1107-1146
%V 191
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_8_a0/
%G en
%F SM_2000_191_8_a0
I. K. Babenko; I. A. Taimanov. Massey products in symplectic manifolds. Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1107-1146. http://geodesic.mathdoc.fr/item/SM_2000_191_8_a0/