Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)
Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 1075-1106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The leading terms of the asymptotics of the solution of the problem of elasticity theory for a thin plane with curved bases are constructed; in addition, the resulting problem (a two-dimensional model) is written out explicitly. Arbitrary anisotropy of elastic properties is allowed; moreover, these properties may depend on the “rapid” transversal and the “slow” longitudinal variables. The substantiation of these asymptotics is carried out on the basis of Korn's weighted inequality. The cases of laminated plates, sloping shells, and plates with sharp edges are discussed separately.
@article{SM_2000_191_7_a6,
     author = {S. A. Nazarov},
     title = {Asymptotic analysis of an~arbitrary anisotropic plate of variable thickness (sloping shell)},
     journal = {Sbornik. Mathematics},
     pages = {1075--1106},
     year = {2000},
     volume = {191},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_7_a6/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1075
EP  - 1106
VL  - 191
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_7_a6/
LA  - en
ID  - SM_2000_191_7_a6
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)
%J Sbornik. Mathematics
%D 2000
%P 1075-1106
%V 191
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2000_191_7_a6/
%G en
%F SM_2000_191_7_a6
S. A. Nazarov. Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell). Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 1075-1106. http://geodesic.mathdoc.fr/item/SM_2000_191_7_a6/

[1] Friedrichs K. O., “On the boundary value problems of the theory of elasticity and Korn's inequality”, Ann. Math., 48 (1947), 441–471 | DOI | MR | Zbl

[2] Nečas J., Les méthodes directes en théorie des equations elliptiques, Masson, Paris, 1967 | MR | Zbl

[3] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[4] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, UMN, 43:5 (1988), 55–98 | MR

[5] Morgenstern D., “Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie”, Arch. Rational Mech. Anal., 4:2 (1959), 145–152 | DOI | MR | Zbl

[6] Shoikhet B. A., “Ob asimptoticheski tochnykh uravneniyakh tonkikh plit slozhnoi struktury”, Prikladnaya matem. i mekh., 37:5 (1973), 914–924 | MR

[7] Ciarlet P. G., Kesavan S., “Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory”, Comput. Methods Appl. Mech. Engrg., 26 (1981), 145–172 | DOI | MR | Zbl

[8] Destuynder P., “Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité”, RAIRO Modél. Math. Anal. Numér., 15 (1981), 331–369 | MR | Zbl

[9] Leora S. N., Nazarov S. A., Proskura A. V., “Vyvod predelnykh uravnenii dlya ellipticheskikh kraevykh zadach v tonkikh oblastyakh pri pomoschi EVM”, ZhVM i MF, 26:7 (1986), 1032–1048 | MR | Zbl

[10] Destuynder P., Gruais I., “Error estimation for the linear three-dimensional elastic plate model”, Asymptotic methods for elastic structures, Walter de Gruyter, Berlin, 1995, 75–88 | MR | Zbl

[11] Friedrichs K. O., Dressler R. F., “A boundary-layer theory for elastic plates”, Comm. Pure Appl. Math., 14:1 (1961), 1–33 | DOI | MR | Zbl

[12] Goldenveizer A. L., “Postroenie priblizhennoi teorii izgiba plastinki metodom asimptoticheskogo integrirovaniya uravnenii teorii uprugosti”, Prikladnaya matem. i mekh., 26:4 (1962), 668–686 | MR | Zbl

[13] Goldenveizer A. L., Kolos A. V., “K postroeniyu dvumernykh uravnenii uprugikh tonkikh plastin”, Prikladnaya matem. i mekh., 29:1 (1965), 141–161

[14] Nazarov S. A., “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestnik LGU, 1982, no. 7, 65–68 | MR | Zbl

[15] Nazarov S. A., Vvedenie v asimptoticheskie metody teorii uprugosti, Izd-vo LGU, L., 1983

[16] Gregory R. D., Wan F. V. M., “Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory”, J. Elasticity, 14:1 (1984), 27–64 | DOI | MR | Zbl

[17] Zorin I. S., Nazarov S. A., “Kraevoi effekt pri izgibe tonkoi trekhmernoi plastiny”, Prikladnaya matem. i mekh., 53:4 (1989), 642–650 | MR | Zbl

[18] Nazarov S. A., “Asimptotika resheniya zadachi Nave–Stoksa o techenii tonkogo sloya zhidkosti”, Sib. matem. zhurn., 31:2 (1990), 131–144 | MR | Zbl

[19] Dauge M., Gruais I., “Développement asymptotique d'ordre arbitraire pour une plaque élastique mince encastrée”, C. R. Acad. Sci. Paris. Sér. I Math., 321 (1995), 375–380 | MR | Zbl

[20] Mazja W. G., Nasarow S. A., Plamenewski B. A., Asymptotiche Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, V. 1, 2, Akademie-Verlag, Berlin, 1991

[21] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin, 1994 | MR

[22] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | Zbl

[23] Caillerie D., “Thin elastic and periodic plates”, Math. Methods Appl. Sci., 2 (1984), 251–270 | DOI | MR

[24] Panasenko G. P., Reztsov M. V., “Osrednenie trekhmernoi zadachi teorii uprugosti v neodnorodnykh plastinakh”, Dokl. AN SSSR, 294:5 (1987), 1061–1065 | MR | Zbl

[25] Kondratev V. A., Oleinik O. A., “O zavisimosti konstant v neravenstve Korna ot parametrov, kharakterizuyuschikh geometriyu oblasti”, UMN, 44:6 (1989), 157–158 | MR | Zbl

[26] Nazarov S. A., “Neravenstva Korna, asimptoticheski tochnye dlya tonkikh oblastei”, Vestnik SPbGU, 1992, no. 8, 19–24 | MR

[27] Cioranescu D., Oleinik O. A., Tronel G., “Korn's inequalities for frame type structures and junctions with sharp estimates for the constants”, Asymptotic Anal., 8 (1994), 1–14 | MR | Zbl

[28] Ambartsumyan S. A., Teoriya anizotropnykh plastin, Nauka, M., 1987 | MR

[29] Sanchez-Palencia E., “Passage à la limite de l'élasticité tridimensionelle à la théorie asymptotique des coques minces”, C. R. Acad. Sci. Paris. Sér. II, 311:8 (1990), 909–916 | MR | Zbl

[30] Zorin I. S., “Operatornoe predstavlenie sistemy Lame i predelnye kraevye zadachi teorii tonkikh plit”, Vestnik LGU, 1987, no. 22, 108 | MR

[31] Nazarov S. A., “Obosnovanie asimptoticheskoi teorii tonkikh sterzhnei. Integralnye i potochechnye openki”, Problemy matem. analiza, 17, Izd-vo SPbGU, SPb, 1997, 101–152 | MR

[32] Makhover E. V., “Izgib plastinki peremennoi tolschiny s ostrym kraem”, Uchenye zapiski LGPI, 17:2 (1957), 28–39

[33] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[34] Nazarov S. A., “Asimptotika reshenii ellipticheskikh uravnenii v tonkikh oblastyakh s kusochno gladkoi granitsei”, Differentsialnye uravneniya i ikh primeneniya, 33, Izd-vo AN LitSSR, Vilnyus, 1982, 62–83

[35] Nazarov S. A., Slutskii A. S., “Asimptotika na beskonechnosti reshenii zadach teorii uprugosti v ploskikh parabolicheskikh oblastyakh”, Problemy matem. analiza, 15, Izd-vo SPbGU, SPb, 1995, 162–200

[36] Nazarov S. A., Slutskii A. S., “Printsip Sen-Venana dlya paraboloidalnykh uprugikh tel”, Problemy matem. analiza, 18, Izd-vo SPbGU, SPb, 1998, 109–156

[37] Busse S., Ciarlet P. G., Miara B., “Coques “faiblement courbées” en coordonnées curvilignes”, C. R. Acad. Sci. Paris. Sér. I Math., 322 (1996), 1093–1098 | MR | Zbl

[38] Busse S., Ciarlet P. G., Miara B., “Justification d'un modèle linèaire bi-dimensionnel de coques “faiblement courbées” en coordonnées curvilignes”, RAIRO Modél. Math. Anal. Numér., 31:3 (1997), 409–434 | MR | Zbl

[39] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy matem. analiza, 16, Izd-vo SPbGU, SPb, 1997, 167–192 | MR

[40] Zorin I. S., Nazarov S. A., “Dvuchlennaya asimptotika resheniya zadachi o prodolnoi deformatsii plastiny, zaschemlennoi po krayu”, Vychislit. mekhanika deformiruemogo tverdogo tela, 2 (1991), 10–21

[41] Nazarov S. A., Semenov B. N., “Ob asimptotike reshenii zadach izgiba plastin s razryvnymi nagruzkami”, Prikladnaya mekhanika, 5, Izd-vo LGU, L., 1981, 135–145 | MR

[42] Nazarov S. A., “Uprugie emkost i polyarizatsiya defekta v uprugom sloe”, Izv. AN SSSR. Mekhanika tverdogo tela, 1990, no. 5, 57–65 | MR

[43] Nazarov S. A., “Proyavlenie prostranstvennoi struktury polya napryazhenii v okrestnosti uglovoi tochki tonkoi plastiny”, Prikladnaya matem. i mekh., 55:4 (1991), 653–661 | MR | Zbl

[44] Aldoshina I. A., Nazarov S. A., “Asimptoticheski tochnye usloviya sopryazheniya na styke plastin s silno razlichayuschimisya kharakteristikami”, Prikladnaya matem. i mekh., 62:2 (1998), 272–282 | MR | Zbl

[45] Nazarov S. A., “Nesamosopryazhennye ellipticheskie zadachi s polinomialnym svoistvom v oblastyakh, imeyuschikh tsilindricheskie vykhody na beskonechnost”, Zapiski nauch. sem. POMI, 249, POMI, SPb., 1997, 212–231 | MR

[46] Vishik M. I., Grushin V. V., “Kraevye zadachi dlya ellipticheskikh uravnenii vysshikh poryadkov”, Matem. sb., 79:1 (1969), 3–36 | MR | Zbl

[47] Ilin A. M., “Kraevaya zadacha dlya ellipticheskikh uravnenii vtorogo poryadka v oblasti s schelyu. I: Dvumernyi sluchai”, Matem. sb., 99:4 (1976), 514–537 | MR | Zbl

[48] Kondratiev V. A., Oleinik O. A., “Korn's type inequalities for a class of unbounded domains and applications to boundary-value problems in elasticity”, Elasticity. Mathematical methods and application, The Ian N. Sneddon 70th Birthday Vol., 1990, 211–233 | Zbl

[49] Nazarov S. A., “Vesovye neravenstva Korna na paraboloidalnykh oblastyakh”, Matem. zametki, 62:5 (1997), 751–765 | MR | Zbl

[50] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[51] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii ellipticheskikh zadach, Nauka, M., 1989 | MR