On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$
Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 1033-1048

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an amply regular graph of diameter greater than 2 the neighbourhoods of whose vertices are strongly regular with $k=2\mu$ is a Taylor graph. A description of the locally Paley graphs is obtained. Uniform extensions of the partial geometries $pG_2(4,t)$ are found.
@article{SM_2000_191_7_a4,
     author = {A. A. Makhnev},
     title = {On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$},
     journal = {Sbornik. Mathematics},
     pages = {1033--1048},
     publisher = {mathdoc},
     volume = {191},
     number = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_7_a4/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1033
EP  - 1048
VL  - 191
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_7_a4/
LA  - en
ID  - SM_2000_191_7_a4
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$
%J Sbornik. Mathematics
%D 2000
%P 1033-1048
%V 191
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_7_a4/
%G en
%F SM_2000_191_7_a4
A. A. Makhnev. On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$. Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 1033-1048. http://geodesic.mathdoc.fr/item/SM_2000_191_7_a4/