On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$
Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 1033-1048 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that an amply regular graph of diameter greater than 2 the neighbourhoods of whose vertices are strongly regular with $k=2\mu$ is a Taylor graph. A description of the locally Paley graphs is obtained. Uniform extensions of the partial geometries $pG_2(4,t)$ are found.
@article{SM_2000_191_7_a4,
     author = {A. A. Makhnev},
     title = {On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$},
     journal = {Sbornik. Mathematics},
     pages = {1033--1048},
     year = {2000},
     volume = {191},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_7_a4/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1033
EP  - 1048
VL  - 191
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_7_a4/
LA  - en
ID  - SM_2000_191_7_a4
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$
%J Sbornik. Mathematics
%D 2000
%P 1033-1048
%V 191
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2000_191_7_a4/
%G en
%F SM_2000_191_7_a4
A. A. Makhnev. On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$. Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 1033-1048. http://geodesic.mathdoc.fr/item/SM_2000_191_7_a4/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989 | MR

[2] Weetman G., “Diameter bounds for graph extensions”, J. Algebra, 45:2 (1977), 391–434 | DOI | MR

[3] Makhnev A. A., “O regulyarnykh grafakh, v kotorykh kazhdoe rebro lezhit v bolshom chisle treugolnikov”, Diskret. analiz i issledovanie operatsii, 2:4 (1995), 42–53 | MR

[4] Makhnev A. A., “O psevdogeometricheskikh grafakh chastichnykh geometrii $pG_2(4,t)$”, Matem. sb., 187:7 (1996), 97–112 | MR | Zbl

[5] Makhnev A. A., “Lokalno $GQ(3,5)$-grafy i geometrii s korotkimi pryamymi”, Diskret. matem., 10 (1998), 72–86 | MR | Zbl

[6] Makhnev A. A., “Rasshireniya $GQ(4,2)$, opisanie giperovalov”, Diskret. matem., 9 (1997), 101–116 | MR | Zbl

[7] Makhnev A. A., “Rasshireniya $GQ(4,2)$, silno regulyarnyi sluchai”, Matem. zametki, 68:1 (2000), 124–130 | MR

[8] Makhnev A. A., Paduchikh D. V., “Vpolne regulyarnye lokalno $GQ(4,2)$ grafy”, Mezhdunarodnaya algebraicheskaya konferentsiya pamyati A. G. Kurosha, Tezisy dokladov, Moskva, 1998, 188–189

[9] Makhnev A. A., “On extensions of partial geometries”, Algebra, eds. Y. Ershov et al., Walter de Gruyter, Berlin, 1996, 165–169 | MR | Zbl

[10] De Clerck F., Del Fra A., Ghinelli D., “Pointset in partial geometries”, Advances in finite geometries and designs, Proc. 3rd Isle of Thorns Conf. (Chelwood Gate/UK 1990), eds. Hirschfeld et al., Oxford Univ. Press, Oxford, 1991, 93–110 | MR

[11] Hughes D. R., “Extended partial geometries: dual 2-designes”, European J. Combin., 11 (1990), 459–471 | MR | Zbl

[12] Makhnev A. A., “O psevdogeometricheskikh grafakh nekotorykh chastichnykh geometrii”, Voprosy algebry, 11, Izd-vo Gomelskogo un-ta, Gomel, 1997, 60–67 | MR