On an extension of the method of two-scale convergence and its applications
Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 973-1014 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of two-scale convergence associated with a fixed periodic Borel measure $\mu$ is introduced. In the case when $d\mu=dx$ is Lebesgue measure on the torus convergence in the sense of Nguetseng–Allaire is obtained. The main properties of two-scale convergence are revealed by the simultaneous consideration of a sequence of functions and a sequence of their gradients. An application of two-scale convergence to the homogenization of some problems in the theory of porous media (the double-porosity model) is presented. A mathematical notion of “softly or weakly coupled parallel flows” is worked out. A homogenized operator is constructed and the convergence result itself is interpreted as a “strong two-scale resolvent convergence”. Problems concerning the behaviour of the spectrum under homogenization are touched upon in this connection.
@article{SM_2000_191_7_a2,
     author = {V. V. Zhikov},
     title = {On an extension of the~method of two-scale convergence and its applications},
     journal = {Sbornik. Mathematics},
     pages = {973--1014},
     year = {2000},
     volume = {191},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_7_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - On an extension of the method of two-scale convergence and its applications
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 973
EP  - 1014
VL  - 191
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_7_a2/
LA  - en
ID  - SM_2000_191_7_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T On an extension of the method of two-scale convergence and its applications
%J Sbornik. Mathematics
%D 2000
%P 973-1014
%V 191
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2000_191_7_a2/
%G en
%F SM_2000_191_7_a2
V. V. Zhikov. On an extension of the method of two-scale convergence and its applications. Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 973-1014. http://geodesic.mathdoc.fr/item/SM_2000_191_7_a2/

[1] De Giorgi E., Spagnolo S., “Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine”, Boll. Unione Mat. Ital., 1973, no. 8, 391–411 | MR | Zbl

[2] Bakhvalov N. S., “Osrednenie differentsialnykh uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 221:3 (1975), 516–519 | MR | Zbl

[3] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[4] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[5] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl

[6] Zhikov V. V., “O vesovykh sobolevskikh prostranstvakh”, Matem. sb., 189:8 (1998), 27–58 | MR | Zbl

[7] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl

[8] Zhikov V. V., “K tekhnike usredneniya variatsionnykh zadach”, Funkts. analiz i ego prilozh., 33:1 (1999), 14–29 | MR | Zbl

[9] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[10] Zhikov V. V., Kozlov S. M., Olejnik O. A., Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994 | MR | Zbl

[11] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[12] Arbogast T., Douglas J., Hornung U., “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM J. Math. Anal., 21:4 (1990), 823–836 | DOI | MR | Zbl

[13] Hornung U., Jäger W., “Diffusion, convection, adsorption, and reaction of chemicals in porous media”, J. Differential Equations, 92:2 (1991), 199–225 | DOI | MR | Zbl

[14] Bourgeat A., Mikelič A., Pyatnitski A., “Modèle de double porosité aléatoire”, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 99–104 | MR | Zbl

[15] Hornung U. (ed.), Homogenization and porous media, Interdisciplinary Applied Mathematics Series, 6, Springer-Verlag, New York, 1997 | MR

[16] Sandrakov G. V., “Osrednenie nestatsionarnykh uravnenii s kontrastnymi koeffitsientami”, Dokl. RAN, 335:5 (1997), 605–608 | MR

[17] Sandrakov G. V., “Osrednenie nestatsionarnykh zadach teorii silno neodnorodnykh uprugikh sred”, Dokl. RAN, 358:3 (1998), 308–311 | MR | Zbl

[18] Ekland N., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[19] Allaire G., Damlamian A., Hornung U., “Two-scale convergence on periodic surfaces and applications”, Mathematical modelling of flow through porous media, eds. A. Bourgeat, C. Carasso, S. Luckhaus, A. Mikelić, World Scientific, Singapore, 1995, 15–25 | MR

[20] Neuss-Radu M., “Some extensions of two-scale convergence”, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 899–904 | MR | Zbl

[21] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[22] Khruslov E. Ya., “Homogenized models of strongly inhomogeneous media”, Proceedings of the International congress of mathematicians (Zurich, Switzerland, 1994), Birkhäuser, Basel, 1995 | MR | Zbl

[23] Khruslov E. Ya., “Usrednenie modeli silno neodnorodnykh sred s pamyatyu”, UMN, 45:1 (1990), 197–199 | MR

[24] Khruslov E., “Homogenized models of composite media”, Composite media and homogenization theory, eds. G. Dal Maso, G. F. Dell'Antonio, Birkhäuser, Basel, 1991, 159–182 | MR

[25] Bouchitté G., Buttazzo G., Seppecher P., “Energies with respect to a measure and applications to low dimensional structures”, Calc. Var. Partial Differential Equations, 5:1 (1997), 37–54 | DOI | MR | Zbl