The primitive ideal and Macaulay's inverse system
Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 945-954

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the construction of the primitive ideal we describe symbolic powers of a homogeneous radical ideal in a polynomial ring without applying localization. We compute Macaulay's inverse system for the primitive ideal. We consider some applications in the theory of deformations of zero-dimensional singularities and Artinian algebras.
@article{SM_2000_191_7_a0,
     author = {A. G. Aleksandrov},
     title = {The primitive ideal and {Macaulay's} inverse system},
     journal = {Sbornik. Mathematics},
     pages = {945--954},
     publisher = {mathdoc},
     volume = {191},
     number = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_7_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - The primitive ideal and Macaulay's inverse system
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 945
EP  - 954
VL  - 191
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_7_a0/
LA  - en
ID  - SM_2000_191_7_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T The primitive ideal and Macaulay's inverse system
%J Sbornik. Mathematics
%D 2000
%P 945-954
%V 191
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_7_a0/
%G en
%F SM_2000_191_7_a0
A. G. Aleksandrov. The primitive ideal and Macaulay's inverse system. Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 945-954. http://geodesic.mathdoc.fr/item/SM_2000_191_7_a0/