The primitive ideal and Macaulay's inverse system
Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 945-954
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the construction of the primitive ideal we describe symbolic powers of a homogeneous radical ideal in a polynomial ring without applying localization. We compute Macaulay's inverse system for the primitive ideal. We consider some applications in the theory of deformations of zero-dimensional singularities and Artinian algebras.
@article{SM_2000_191_7_a0,
author = {A. G. Aleksandrov},
title = {The primitive ideal and {Macaulay's} inverse system},
journal = {Sbornik. Mathematics},
pages = {945--954},
publisher = {mathdoc},
volume = {191},
number = {7},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_7_a0/}
}
A. G. Aleksandrov. The primitive ideal and Macaulay's inverse system. Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 945-954. http://geodesic.mathdoc.fr/item/SM_2000_191_7_a0/