Double canal hypersurfaces in the Euclidean space $E^n$
Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 937-943
Cet article a éte moissonné depuis la source Math-Net.Ru
A multidimensional analogue of the cyclides of Dupin is considered: double canal hypersurfaces. A generalization is proved of the theorem about the set of centres $C_1$ and $C_2$ of the generating hyperspheres.
@article{SM_2000_191_6_a7,
author = {M. A. Cheshkova},
title = {Double canal hypersurfaces in {the~Euclidean} space~$E^n$},
journal = {Sbornik. Mathematics},
pages = {937--943},
year = {2000},
volume = {191},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_6_a7/}
}
M. A. Cheshkova. Double canal hypersurfaces in the Euclidean space $E^n$. Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 937-943. http://geodesic.mathdoc.fr/item/SM_2000_191_6_a7/
[1] Lumiste Yu. G., “Konstruktsiya Keli–Katalana dlya nekotorykh giperpoverkhnostei Dyupena”, Uch. zapiski Tartusskogo un-ta, 1986, 36–49 | MR | Zbl
[2] Vyalyas M. E., Lumiste Yu. G., “Izotermicheskie giperpoverkhnosti i trekhmernye gipertsiklidy Dyupena–Manngeima”, Matem. zametki, 41:5 (1987), 731–740 | MR | Zbl
[3] Cecil T. E., Ryan P. J., “Conformal geometry and cyclides Dupin”, Can. J. Math., 32:4 (1980), 767–782 | MR | Zbl
[4] Shulikovskii V. I., Klassicheskaya differentsialnaya geometriya v tenzornom izlozhenii, GIFML, M., 1963
[5] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981