Birationally rigid Fano double hypersurfaces
Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 883-908

Voir la notice de l'article provenant de la source Math-Net.Ru

A general Fano double hypersurface $V$ of index 1 $(\sigma\colon V\to Q_m\subset \mathbb P^{M+1}$ is a double cover branched over a smooth divisor $W=W^*_{2l}\subset\mathbb P^{M+1}$, here $m+l=M+1\geqslant 5)$ is proved to be birationally superrigid; in particular, such a hypersurface admits no non-trivial structures of a fibration into uniruled varieties, and it is non-rational. Its groups of birational and biregular automorphisms coincide.
@article{SM_2000_191_6_a4,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid {Fano} double hypersurfaces},
     journal = {Sbornik. Mathematics},
     pages = {883--908},
     publisher = {mathdoc},
     volume = {191},
     number = {6},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_6_a4/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid Fano double hypersurfaces
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 883
EP  - 908
VL  - 191
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_6_a4/
LA  - en
ID  - SM_2000_191_6_a4
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid Fano double hypersurfaces
%J Sbornik. Mathematics
%D 2000
%P 883-908
%V 191
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_6_a4/
%G en
%F SM_2000_191_6_a4
A. V. Pukhlikov. Birationally rigid Fano double hypersurfaces. Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 883-908. http://geodesic.mathdoc.fr/item/SM_2000_191_6_a4/