Birationally rigid Fano double hypersurfaces
Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 883-908 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general Fano double hypersurface $V$ of index 1 $(\sigma\colon V\to Q_m\subset \mathbb P^{M+1}$ is a double cover branched over a smooth divisor $W=W^*_{2l}\subset\mathbb P^{M+1}$, here $m+l=M+1\geqslant 5)$ is proved to be birationally superrigid; in particular, such a hypersurface admits no non-trivial structures of a fibration into uniruled varieties, and it is non-rational. Its groups of birational and biregular automorphisms coincide.
@article{SM_2000_191_6_a4,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid {Fano} double hypersurfaces},
     journal = {Sbornik. Mathematics},
     pages = {883--908},
     year = {2000},
     volume = {191},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_6_a4/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid Fano double hypersurfaces
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 883
EP  - 908
VL  - 191
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_6_a4/
LA  - en
ID  - SM_2000_191_6_a4
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid Fano double hypersurfaces
%J Sbornik. Mathematics
%D 2000
%P 883-908
%V 191
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2000_191_6_a4/
%G en
%F SM_2000_191_6_a4
A. V. Pukhlikov. Birationally rigid Fano double hypersurfaces. Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 883-908. http://geodesic.mathdoc.fr/item/SM_2000_191_6_a4/

[1] Pukhlikov A. V., Essentials of the method of maximal singularities, Warwick Preprint No 31, 1996 ; Birational Geometry of Threefolds (to appear) | MR

[2] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[3] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii s puchkom poverkhnostei Del Petstso”, Izv. RAN. Ser. matem., 62:1 (1998), 123–164 | MR | Zbl

[4] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86 (128):1 (1971), 140–166 | MR | Zbl

[5] Iskovskikh V. A., Pukhlikov A. V., “Birational automorphisms of multi-dimensional algebraic varieties”, J. Math. Sci., 82 (1996), 3528–3613 | DOI | MR | Zbl

[6] Corti A., Pukhlikov A., Reid M., Fano 3-fold hypersurfaces, Warwick Preprint No 10, 1999; Birational Geometry of Threefolds (to appear)

[7] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernoi kvartiki s prosteishei osobennostyu”, Matem. sb., 135 (177):4 (1988), 472–496 | MR | Zbl

[8] Pukhlikov A. V., “Biratsionalnye avtomorfizmy dvoinogo prostranstva i dvoinoi kvadriki”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 229–239 | MR

[9] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovrem. problemy matem., 12, VINITI, M., 1979, 159–236 | MR

[10] Sarkisov V. G., “O strukturakh rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 371–408 | MR | Zbl

[11] Kawamata Y., “Divisorial contractions to 3-dimensional terminal quotient singularities”, Higher dimensional complex varieties, Berlin, 1996, 241–245 | MR

[12] Kollár J. et al., Flips and abundance for algebraic threefolds, Asterisque, 211, 1993

[13] Corti A., “Singularities of linear systems and 3-fold birational geometry”, Birational Geometry of Threefolds (to appear) | MR

[14] Dolgachev I. V., “Weighted projective spaces”, Group actions and vector fields, Lecture Notes in Math., 956, 1981, 34–71 | DOI | MR

[15] Fletcher A. R., Working with weighted complete intersections, Warwick Preprint, 1989 | MR

[16] Fulton W., Intersection Theory, Springer-Verlag, Berlin, 1984 ; Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR | Zbl | MR