On the problem of control synthesis: the Pontryagin alternating integral and the~Hamilton--Jacobi equation
Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 849-881
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with the problem of control synthesis under unknown, but bounded disturbances for a system with linear structure and hard (geometric) bounds on the control and the disturbance inputs. It emphasizes the role of set-valued methods and, in particular, of the Pontryagin multivalued alternating integral in the corresponding solution schemes. Close ties with the Hamilton–Jacobi techniques are discussed.
This paper also discusses an approach producing effective numerical solutions on the basis of appropriate ellipsoidal techniques. It presents a framework for going over from the abstract theory to numerically realizable ellipsoidal representations.
@article{SM_2000_191_6_a3,
author = {A. B. Kurzhanskii and N. B. Melnikov},
title = {On the problem of control synthesis: the {Pontryagin} alternating integral and {the~Hamilton--Jacobi} equation},
journal = {Sbornik. Mathematics},
pages = {849--881},
publisher = {mathdoc},
volume = {191},
number = {6},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_6_a3/}
}
TY - JOUR AU - A. B. Kurzhanskii AU - N. B. Melnikov TI - On the problem of control synthesis: the Pontryagin alternating integral and the~Hamilton--Jacobi equation JO - Sbornik. Mathematics PY - 2000 SP - 849 EP - 881 VL - 191 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_6_a3/ LA - en ID - SM_2000_191_6_a3 ER -
%0 Journal Article %A A. B. Kurzhanskii %A N. B. Melnikov %T On the problem of control synthesis: the Pontryagin alternating integral and the~Hamilton--Jacobi equation %J Sbornik. Mathematics %D 2000 %P 849-881 %V 191 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2000_191_6_a3/ %G en %F SM_2000_191_6_a3
A. B. Kurzhanskii; N. B. Melnikov. On the problem of control synthesis: the Pontryagin alternating integral and the~Hamilton--Jacobi equation. Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 849-881. http://geodesic.mathdoc.fr/item/SM_2000_191_6_a3/