On the problem of control synthesis: the Pontryagin alternating integral and the Hamilton–Jacobi equation
Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 849-881 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with the problem of control synthesis under unknown, but bounded disturbances for a system with linear structure and hard (geometric) bounds on the control and the disturbance inputs. It emphasizes the role of set-valued methods and, in particular, of the Pontryagin multivalued alternating integral in the corresponding solution schemes. Close ties with the Hamilton–Jacobi techniques are discussed. This paper also discusses an approach producing effective numerical solutions on the basis of appropriate ellipsoidal techniques. It presents a framework for going over from the abstract theory to numerically realizable ellipsoidal representations.
@article{SM_2000_191_6_a3,
     author = {A. B. Kurzhanskii and N. B. Melnikov},
     title = {On the problem of control synthesis: the {Pontryagin} alternating integral and {the~Hamilton{\textendash}Jacobi} equation},
     journal = {Sbornik. Mathematics},
     pages = {849--881},
     year = {2000},
     volume = {191},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_6_a3/}
}
TY  - JOUR
AU  - A. B. Kurzhanskii
AU  - N. B. Melnikov
TI  - On the problem of control synthesis: the Pontryagin alternating integral and the Hamilton–Jacobi equation
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 849
EP  - 881
VL  - 191
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_6_a3/
LA  - en
ID  - SM_2000_191_6_a3
ER  - 
%0 Journal Article
%A A. B. Kurzhanskii
%A N. B. Melnikov
%T On the problem of control synthesis: the Pontryagin alternating integral and the Hamilton–Jacobi equation
%J Sbornik. Mathematics
%D 2000
%P 849-881
%V 191
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2000_191_6_a3/
%G en
%F SM_2000_191_6_a3
A. B. Kurzhanskii; N. B. Melnikov. On the problem of control synthesis: the Pontryagin alternating integral and the Hamilton–Jacobi equation. Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 849-881. http://geodesic.mathdoc.fr/item/SM_2000_191_6_a3/

[1] Pontryagin L. S., “O lineinykh differentsialnykh igrakh. I; II”, Dokl. AN SSSR, 174:6 (1967), 679–773 ; 175:4, 910–912 | Zbl

[2] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970 | MR

[3] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl

[4] Varaiya P., Lin J., “Existence of saddle points in differential games”, SIAM J. Control Optim., 7:1 (1969), 142–157 | DOI

[5] Mischenko E. F., “Zadachi presledovaniya i ukloneniya ot vstrechi v teorii differentsialnykh igr”, Izv. AN SSSR. Tekhn. kibernetika, 5 (1971), 3–9 | MR | Zbl

[6] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990 | MR | Zbl

[7] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, SCFA, Birkhäuser, Boston, 1996 | MR

[8] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1986 | MR | Zbl

[9] Kurzhanskii A. B., Nikonov O. I., “O zadache sinteza strategii upravleniya. Evolyutsionnye uravneniya i mnogoznachnoe integrirovanie”, Dokl. AN SSSR, 311:4 (1990), 788–793 | MR | Zbl

[10] Kurzhanskii A. B., Nikonov O. I., “Evolyutsionnye uravneniya dlya puchkov traektorii sintezirovannykh sistem upravleniya”, Dokl. RAN, 333:5 (1993), 578–581 | MR | Zbl

[11] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Matem. sb., 112(154):3(7) (1980), 307–330 | MR | Zbl

[12] Nikolskii M. S., “O nizhnem alternirovannom integrale Pontryagina v lineinykh differentsialnykh igrakh presledovaniya”, Matem. sb., 128(170):1(9) (1985), 35–49 | MR | Zbl

[13] Ponomarev A. P., Rozov N. Kh., “O differentsiruemosti opornoi funktsii alternirovannogo integrala”, Matem. zametki, 30:6 (1981), 865–870 | MR

[14] Chernousko F. L., State estimation for dynamic systems, CRC Press, New York, 1994

[15] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl

[16] Subbotin A. I., Generalized solutions of first-order PDE's: the dynamic optimization perspective, SC, Birkhäuser, Boston, 1995 | MR

[17] Lions P-L., Souganidis P. E., “Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaac's equations”, SIAM J. Control Optim., 23 (1995), 566–583 | DOI | MR

[18] Fleming W. H., Soner H. M., Controlled Markov processes and viscosity solutions, Springer-Verlag, New York, 1993 | MR | Zbl

[19] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Birkhäuser, Boston, 1997 | MR | Zbl

[20] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR

[21] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[22] Fan Ky, “Minmax theorems”, Proc. Nat. Acad. Sci. U.S.A., 39:1 (1953), 42–47 | DOI | MR

[23] Kurzhanskii A. B., “Alternirovannyi integral Pontryagina v teorii sinteza upravlenii”, Tr. MIAN, 224, Nauka, M., 1999, 234–248 | MR | Zbl

[24] Schneider R., Convex bodies: the Brunn–Minkowski theory, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[25] Polovinkin E. S., Ivanov G. E., “O silno vypuklykh lineinykh differentsialnykh igrakh”, Differents. uravneniya, 31:10 (1995), 1641–1648 | MR | Zbl

[26] Demyanov V. F., Minimaks: proizvodnye po napravleniyam, Izd-vo LGU, L., 1974

[27] Fon Neiman Dzh., Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970 | MR

[28] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR