On the Dirichlet problem for the Helmholtz equation on the plane with boundary conditions on an almost closed curve
Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 821-848 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article the two-dimensional Dirichlet boundary-value problem is considered for the Helmholtz operator with boundary conditions on an almost closed curve $\Gamma_\varepsilon $ where $\varepsilon\ll 1$ is the distance between the end-points of the curve. A complete asymptotic expression is constructed for a pole of the analytic continuation of the Green's function of this problem as the pole converges to a simple eigenfrequency of the limiting interior problem in the case when the corresponding eigenfunction of the limiting problem has a second-order zero at the centre of contraction of the gap. The influence of symmetry of the gap on the absolute value of the imaginary parts of the poles is investigated.
@article{SM_2000_191_6_a2,
     author = {R. R. Gadyl'shin},
     title = {On the {Dirichlet} problem for the {Helmholtz} equation on the plane with boundary conditions on an almost closed curve},
     journal = {Sbornik. Mathematics},
     pages = {821--848},
     year = {2000},
     volume = {191},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_6_a2/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
TI  - On the Dirichlet problem for the Helmholtz equation on the plane with boundary conditions on an almost closed curve
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 821
EP  - 848
VL  - 191
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_6_a2/
LA  - en
ID  - SM_2000_191_6_a2
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%T On the Dirichlet problem for the Helmholtz equation on the plane with boundary conditions on an almost closed curve
%J Sbornik. Mathematics
%D 2000
%P 821-848
%V 191
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2000_191_6_a2/
%G en
%F SM_2000_191_6_a2
R. R. Gadyl'shin. On the Dirichlet problem for the Helmholtz equation on the plane with boundary conditions on an almost closed curve. Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 821-848. http://geodesic.mathdoc.fr/item/SM_2000_191_6_a2/

[1] Wolfe P., “An existence theorem for the reduced wave equation”, Proc. Amer. Math. Soc., 21 (1969), 663–666 | DOI | MR | Zbl

[2] Hayashi Y., “The Dirichlet problem for the two-dimensional Helmholtz equation for an open boundary”, J. Math. Anal. Appl., 44 (1973), 489–530 | DOI | MR | Zbl

[3] Eremin Yu. A., Zakharov E. V., “O nekotorykh pryamykh i obratnykh zadachakh teorii difraktsii”, Dopolnenie k kn.: Kolton D., Kress R, Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 290–309 | MR

[4] Meixsner J., “Die Kantenbedingung in der Theorie der Beugung electromagnetisher Wellen an volkommen lietenden ebenen Shirmer”, Ann. Phys., 6 (1949), 1–9

[5] Lord Rayleigh, “The theory of Helmholtz resonator”, Proc. Roy. Soc. London Ser. A, 92 (1916), 265–275 | DOI | Zbl

[6] Miles J. W., “Scattering by a spherical cap”, J. Acoust. Soc. Amer., 50 (1971), 892–903 | DOI

[7] Sanchez-Hubert J., Sanchez-Palencia E., Vibration and coupling of continuous systems. Asymptotic methods, Springer-Verlag, Berlin, 1989 | MR | Zbl

[8] Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977 | MR | Zbl

[9] Shestopalov V. P., Summatornye uravneniya v sovremennoi teorii difraktsii, Naukova dumka, Kiev, 1983 | MR

[10] Gotlib V. Yu., “Rasseyanie na kruglom rezonatore s uzkoi schelyu kak zadacha teorii vozmuschenii”, Dokl. AN SSSR, 287 (1986), 1109–1113 | MR

[11] Gadylshin R. R., “Poverkhnostnye potentsialy i metod soglasovaniya asimptoticheskikh razlozhenii v zadache o rezonatore Gelmgoltsa”, Algebra i analiz, 4:2 (1992), 88–115 | MR | Zbl

[12] Gadylshin R. R., “Suschestvovanie i asimptotiki polyusov s maloi mnimoi chastyu dlya rezonatora Gelmgoltsa”, UMN, 52:1 (1997), 3–76 | MR | Zbl

[13] Reichardt H., “Ausstrahlungs Bedingungen fur die Wellengleichung”, Abh. Math. Sem. Univ. Hamburg, 24 (1960), 41–53 | DOI | MR | Zbl

[14] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[15] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[16] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR

[17] Gadylshin R. R., “O vliyanii vybora mesta otverstiya i ego formy na svoistva akusticheskogo rezonatora”, TMF, 93:1 (1992), 107–118 | MR

[18] Gadylshin R. R., “O rasscheplenii polyusov funktsii Grina dlya elektromagnitnogo analoga rezonatora Gelmgoltsa”, Radiotekhnika i elektronika, 36, 2045–2047

[19] Gadylshin R. R., “Ob analiticheskom prodolzhenii funktsii Grina rezonatora Gelmgoltsa”, Asimptoticheskie metody resheniya differentsialnykh uravnenii, Ufa, 1992, 18–26

[20] Beale J. T., “Scattering frequencies of resonators”, Commun. Pure Appl. Math., 26 (1973), 549–563 | DOI | MR | Zbl

[21] Shenk N., Thoe D., “Resonant states and poles of scattering matrix for perturbations of $-\Delta$”, J. Math. Anal. Appl., 37 (1972), 467–491 | DOI | MR | Zbl

[22] Arsenev A. A., “Ob osobennostyakh analiticheskogo prodolzheniya i rezonansnykh svoistvakh resheniya zadachi rasseyaniya dlya uravneniya Gelmgoltsa”, ZhVMiMF, 12:1 (1971), 112–138 | MR

[23] Petras S. V., “O rasscheplenii serii rezonansov na “nefizicheskom liste””, Zapiski nauch. sem. LOMI, 51, Nauka, L., 1975, 155–169 | MR | Zbl

[24] Arsenev A. A., “O suschestvovanii rezonansnykh polyusov i rezonansov pri rasseyanii v sluchae kraevykh uslovii II i III roda”, ZhVMiMF, 16 (1976), 718–724 | MR | Zbl

[25] Sanches-Palensia E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[26] Fernandez C., “Resonances in scattering by a resonator”, Indiana Univ. Math. J., 34 (1985), 115–125 | DOI | MR | Zbl

[27] Hislop P. D., Martinez A., “Scattering resonances of a Helmholtz resonator”, Indiana Univ. Math. J., 40:2 (1991), 767–788 | DOI | MR | Zbl

[28] Hislop P. D., “Singular perturbations of Dirichlet and Neumann domains and resonances for obstacle scattering”, Astérisque, 210 (1992), 197–216 | MR | Zbl

[29] Gadylshin R. R., “O polyusakh akusticheskogo rezonatora”, Funkts. analiz i ego prilozh., 27:4 (1993), 3–16 | MR | Zbl

[30] Gadylshin R. R., “Asimptotika reshenii singulyarno vozmuschennoi zadachi Dirikhle”, ZhVMiMF, 36:1 (1996), 92–102 | MR | Zbl