On a criterion for the~topological conjugacy of a~quasisymmetric group to a~group of affine transformations of~$\mathbb R$
Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 809-819

Voir la notice de l'article provenant de la source Math-Net.Ru

A new criterion for the quasisymmetric conjugacy of an arbitrary group of orientation-preserving quasisymmetric homeomorphisms of the real line to some group of affine transformations is put forward. In the criterion proposed by Hinkkanen one requires the uniform boundedness of constants involved in the definition of a quasisymmetric transformation over all elements of the group. In the new criterion only the uniform boundedness of constants for each cyclic subgroup is required.
@article{SM_2000_191_6_a1,
     author = {L. A. Beklaryan},
     title = {On a criterion for the~topological conjugacy of a~quasisymmetric group to a~group of affine transformations of~$\mathbb R$},
     journal = {Sbornik. Mathematics},
     pages = {809--819},
     publisher = {mathdoc},
     volume = {191},
     number = {6},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_6_a1/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - On a criterion for the~topological conjugacy of a~quasisymmetric group to a~group of affine transformations of~$\mathbb R$
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 809
EP  - 819
VL  - 191
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_6_a1/
LA  - en
ID  - SM_2000_191_6_a1
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T On a criterion for the~topological conjugacy of a~quasisymmetric group to a~group of affine transformations of~$\mathbb R$
%J Sbornik. Mathematics
%D 2000
%P 809-819
%V 191
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_6_a1/
%G en
%F SM_2000_191_6_a1
L. A. Beklaryan. On a criterion for the~topological conjugacy of a~quasisymmetric group to a~group of affine transformations of~$\mathbb R$. Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 809-819. http://geodesic.mathdoc.fr/item/SM_2000_191_6_a1/