Systems of random variables equivalent in distribution to the~Rademacher system and $\mathscr K$-closed representability of Banach couples
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 779-807
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Necessary and sufficient conditions ensuring that one can select from a system $\{f_n\}_{n=1}^\infty$ of random variables on a probability space $(\Omega,\Sigma,\mathsf P)$ a subsystem $\{\varphi_i\}_{i=1}^\infty$ equivalent in distribution to the Rademacher system on $[0,1]$ are found. In particular, this is always possible if $\{f_n\}_{n=1}^\infty$ is a uniformly bounded orthonormal sequence. The main role in the proof is played by the connection (discovered in this paper) between the equivalence in distribution of random variables and the behaviour of the $L_p$-norms of the corresponding polynomials.
An application of the results obtained to the study of the ${\mathscr K}$-closed representability of Banach couples is presented.
			
            
            
            
          
        
      @article{SM_2000_191_6_a0,
     author = {S. V. Astashkin},
     title = {Systems of random variables equivalent in distribution to {the~Rademacher} system and $\mathscr K$-closed representability of {Banach} couples},
     journal = {Sbornik. Mathematics},
     pages = {779--807},
     publisher = {mathdoc},
     volume = {191},
     number = {6},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_6_a0/}
}
                      
                      
                    TY - JOUR AU - S. V. Astashkin TI - Systems of random variables equivalent in distribution to the~Rademacher system and $\mathscr K$-closed representability of Banach couples JO - Sbornik. Mathematics PY - 2000 SP - 779 EP - 807 VL - 191 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_6_a0/ LA - en ID - SM_2000_191_6_a0 ER -
%0 Journal Article %A S. V. Astashkin %T Systems of random variables equivalent in distribution to the~Rademacher system and $\mathscr K$-closed representability of Banach couples %J Sbornik. Mathematics %D 2000 %P 779-807 %V 191 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2000_191_6_a0/ %G en %F SM_2000_191_6_a0
S. V. Astashkin. Systems of random variables equivalent in distribution to the~Rademacher system and $\mathscr K$-closed representability of Banach couples. Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 779-807. http://geodesic.mathdoc.fr/item/SM_2000_191_6_a0/
