Orbits and invariants of cubic matrices of order three
Sbornik. Mathematics, Tome 191 (2000) no. 5, pp. 717-724
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $V_i$, $i=1, 2, 3$, be a three-dimensional complex vector space. For the natural linear representation of the group $\operatorname{SL}(V_1)\times\operatorname{SL}(V_2)\times \operatorname{SL}(V_3)$ in the space $V_1\otimes V_2\otimes V_3$ the orbits are classified and generators of the algebra of invariants are described.
@article{SM_2000_191_5_a4,
author = {A. G. Nurmiev},
title = {Orbits and invariants of cubic matrices of order three},
journal = {Sbornik. Mathematics},
pages = {717--724},
publisher = {mathdoc},
volume = {191},
number = {5},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_5_a4/}
}
A. G. Nurmiev. Orbits and invariants of cubic matrices of order three. Sbornik. Mathematics, Tome 191 (2000) no. 5, pp. 717-724. http://geodesic.mathdoc.fr/item/SM_2000_191_5_a4/