Orbits and invariants of cubic matrices of order three
Sbornik. Mathematics, Tome 191 (2000) no. 5, pp. 717-724
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $V_i$, $i=1, 2, 3$, be a three-dimensional complex vector space. For the natural linear representation of the group $\operatorname{SL}(V_1)\times\operatorname{SL}(V_2)\times \operatorname{SL}(V_3)$ in the space $V_1\otimes V_2\otimes V_3$ the orbits are classified and generators of the algebra of invariants are described.
@article{SM_2000_191_5_a4,
author = {A. G. Nurmiev},
title = {Orbits and invariants of cubic matrices of order three},
journal = {Sbornik. Mathematics},
pages = {717--724},
year = {2000},
volume = {191},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_5_a4/}
}
A. G. Nurmiev. Orbits and invariants of cubic matrices of order three. Sbornik. Mathematics, Tome 191 (2000) no. 5, pp. 717-724. http://geodesic.mathdoc.fr/item/SM_2000_191_5_a4/
[1] Thrall R. M., Chanler J. H., “Ternary trilinear forms in the field of complex numbers”, Duke Math. J., 4:4 (1938), 678–690 | DOI | MR | Zbl
[2] Vinberg E. B., “Gruppa Veilya graduirovannoi algebry Li”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 488–526 | MR | Zbl
[3] Vinberg E. B., Elashvili A. G., “Klassifikatsiya trivektorov devyatimernogo prostranstva”, Trudy seminara po vektornomu i tenzornomu analizu, 18, Izd-vo MGU, M., 1978, 197–233 | MR
[4] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6:2 (1954), 274–304 | MR | Zbl
[5] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl