Matrix analogues of the~beta function and Plancherel's formula for Berezin kernel representations
Sbornik. Mathematics, Tome 191 (2000) no. 5, pp. 683-715
Voir la notice de l'article provenant de la source Math-Net.Ru
Ten series of matrix integrals (over non-compact Riemannian symmetric spaces) imitating the standard beta function are constructed. This is a broad generalization of Hua Loo Keng's integrals (1958) and Gindikin's B-integrals (1964). As a consequence Plancherel's formula for the Berezin kernel representations of classical groups is obtained in explicit form. Matrix models of non-compact Riemannian symmetric spaces are also discussed.
@article{SM_2000_191_5_a3,
author = {Yu. A. Neretin},
title = {Matrix analogues of the~beta function and {Plancherel's} formula for {Berezin} kernel representations},
journal = {Sbornik. Mathematics},
pages = {683--715},
publisher = {mathdoc},
volume = {191},
number = {5},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_5_a3/}
}
TY - JOUR AU - Yu. A. Neretin TI - Matrix analogues of the~beta function and Plancherel's formula for Berezin kernel representations JO - Sbornik. Mathematics PY - 2000 SP - 683 EP - 715 VL - 191 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_5_a3/ LA - en ID - SM_2000_191_5_a3 ER -
Yu. A. Neretin. Matrix analogues of the~beta function and Plancherel's formula for Berezin kernel representations. Sbornik. Mathematics, Tome 191 (2000) no. 5, pp. 683-715. http://geodesic.mathdoc.fr/item/SM_2000_191_5_a3/