Rigidity of piecewise convex surfaces of torus type
Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 583-617 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Closed genus-one surfaces pasted from finitely many pieces of convex $C^2$-surfaces are considered. Vertices and conical points are allowed. An algorithm for the construction of such surfaces is given. They are proved to be rigid outside at domains with respect to infinitesimal bendings of the first order with continuous bending fields belonging to the class $C^2$ on each $C^2$-smooth piece.
@article{SM_2000_191_4_a5,
     author = {P. E. Markov and E. V. Shkryl'},
     title = {Rigidity of piecewise convex surfaces of torus type},
     journal = {Sbornik. Mathematics},
     pages = {583--617},
     year = {2000},
     volume = {191},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_4_a5/}
}
TY  - JOUR
AU  - P. E. Markov
AU  - E. V. Shkryl'
TI  - Rigidity of piecewise convex surfaces of torus type
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 583
EP  - 617
VL  - 191
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_4_a5/
LA  - en
ID  - SM_2000_191_4_a5
ER  - 
%0 Journal Article
%A P. E. Markov
%A E. V. Shkryl'
%T Rigidity of piecewise convex surfaces of torus type
%J Sbornik. Mathematics
%D 2000
%P 583-617
%V 191
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2000_191_4_a5/
%G en
%F SM_2000_191_4_a5
P. E. Markov; E. V. Shkryl'. Rigidity of piecewise convex surfaces of torus type. Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 583-617. http://geodesic.mathdoc.fr/item/SM_2000_191_4_a5/

[1] Aleksandrov A. D., “Ob odnom klasse zamknutykh poverkhnostei”, Matem. sb., 4 (46):1 (1938), 69–76

[2] Efimov N. V., “Kachestvennye voprosy teorii deformatsii poverkhnostei”, UMN, 3:2 (1948), 47–158 | MR | Zbl

[3] Sabitov I. Kh., “O zhestkosti nekotorykh poverkhnostei vrascheniya”, Matem. sb., 60 (102):4 (1963), 506–519 | MR | Zbl

[4] Boyarskii B. V., Vekua I. N., “Dokazatelstvo zhestkosti kusochno-regulyarnykh zamknutykh vypuklykh poverkhnostei neotritsatelnoi krivizny”, Izv. AN SSSR. Ser. matem., 22:2 (1958), 165–176 | MR

[5] Boyarskii B. V., “O zhestkosti nekotorykh sostavnykh poverkhnostei”, UMN, 14:6 (1959), 141–146 | MR | Zbl

[6] Sabitov I. Kh., “Ob odnom uslovii zhestkosti sostavnykh poverkhnostei”, Matem. zametki, 2:1 (1967), 105–113 | MR

[7] Fomenko V. T., Markov P. E., “O zhestkosti zerkalno vypuchennykh poverkhnostei”, Matem. zametki, 19:3 (1976), 469–479 | MR | Zbl

[8] Fomenko V. T., Markov P. E., “O zhestkosti odnogo klassa vnutrenne skleennykh poverkhnostei”, Ukr. geom. sb., 1977, no. 20, 141–146 | MR

[9] Markov P. E., “O zhestkosti zvezdnykh vnutrenne skleennykh poverkhnostei”, Matem. zametki, 22:3 (1977), 321–333 | MR | Zbl

[10] Fomenko L. P., “O zhestkosti skleennykh poverkhnostei, imeyuschikh konicheskie tochki”, Deformatsii poverkhnostei s zadannymi rekurrentnymi sootnosheniyami, Taganrog, 1995, 57–62

[11] Mikhailov L. G., Usmanov Z. D., “Beskonechno malye izgibaniya poverkhnostei vrascheniya polozhitelnoi krivizny s konicheskoi ili parabolicheskoi tochkoi v polyuse”, Issledovaniya po kraevym zadacham teorii funktsii i differentsialnykh uravnenii, Dushanbe, 1965, 21–53

[12] Mikhailov L. G., Usmanov Z. D., “Beskonechno malye izgibaniya poverkhnostei vrascheniya polozhitelnoi krivizny s konicheskoi ili parabolicheskoi tochkoi v polyuse”, Dokl. AN SSSR, 166:4 (1966), 791–794 | MR

[13] Pogorelov A. V., Geometricheskie metody v nelineinoi teorii uprugikh obolochek, Nauka, M., 1967 | MR

[14] De Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1956

[15] Borovskii Yu. E., “Vpolne integriruemye sistemy Pfaffa”, Izv. vuzov. Ser. matem., 1959, no. 2, 28–40 | MR | Zbl

[16] Borovskii Yu. E., “Sistemy Pfaffa s koeffitsientami iz $L_n$ i ikh geometricheskie prilozheniya”, Sib. matem. zhurnal, 24:2 (1988), 10–16 | MR

[17] Markov P. E., “O pogruzhenii metrik, blizkikh k pogruzhaemym”, Ukr. geom. sb., 1992, no. 35, 49–67

[18] Markov P. E., “Obschie analiticheskie i beskonechno malye deformatsii pogruzhenii, 1”, Izv. vuzov. Ser. matem., 1997, no. 9, 21–34 | Zbl

[19] Kartan E., Geometriya rimanovykh prostranstv, ONTI, M.–L., 1936

[20] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[21] Markov P. E., “Ob odnom klasse beskonechno malykh izgibanii poverkhnostei”, Izv. Sev.-Kavk. nauchn. tsentra vysshei shkoly, 1985, no. 4, 22–25 | MR | Zbl

[22] Blyashke V., Differentsialnaya geometriya i geometricheskie osnovy teorii otnositelnosti Einshteina, ONTI, M.–L., 1935