Rigidity of piecewise convex surfaces of torus type
Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 583-617

Voir la notice de l'article provenant de la source Math-Net.Ru

Closed genus-one surfaces pasted from finitely many pieces of convex $C^2$-surfaces are considered. Vertices and conical points are allowed. An algorithm for the construction of such surfaces is given. They are proved to be rigid outside at domains with respect to infinitesimal bendings of the first order with continuous bending fields belonging to the class $C^2$ on each $C^2$-smooth piece.
@article{SM_2000_191_4_a5,
     author = {P. E. Markov and E. V. Shkryl'},
     title = {Rigidity of piecewise convex surfaces of torus type},
     journal = {Sbornik. Mathematics},
     pages = {583--617},
     publisher = {mathdoc},
     volume = {191},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_4_a5/}
}
TY  - JOUR
AU  - P. E. Markov
AU  - E. V. Shkryl'
TI  - Rigidity of piecewise convex surfaces of torus type
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 583
EP  - 617
VL  - 191
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_4_a5/
LA  - en
ID  - SM_2000_191_4_a5
ER  - 
%0 Journal Article
%A P. E. Markov
%A E. V. Shkryl'
%T Rigidity of piecewise convex surfaces of torus type
%J Sbornik. Mathematics
%D 2000
%P 583-617
%V 191
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_4_a5/
%G en
%F SM_2000_191_4_a5
P. E. Markov; E. V. Shkryl'. Rigidity of piecewise convex surfaces of torus type. Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 583-617. http://geodesic.mathdoc.fr/item/SM_2000_191_4_a5/