Non-classical relaxation cycle of a~three-dimensional system of Lotka--Volterra equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 567-581
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A mathematical model of the well-known Belousov's reaction is the object of study. It is reasonable to assume that one coefficient in the corresponding system of differential equations is large, while the other parameters are finite. Non-standard tools taking account of the peculiarities of the problem bring one to a theorem on the existence of a relaxation cycle, allowing at the same time to reveal its characteristic features.
			
            
            
            
          
        
      @article{SM_2000_191_4_a4,
     author = {Yu. S. Kolesov},
     title = {Non-classical relaxation cycle of a~three-dimensional system of {Lotka--Volterra} equations},
     journal = {Sbornik. Mathematics},
     pages = {567--581},
     publisher = {mathdoc},
     volume = {191},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_4_a4/}
}
                      
                      
                    Yu. S. Kolesov. Non-classical relaxation cycle of a~three-dimensional system of Lotka--Volterra equations. Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 567-581. http://geodesic.mathdoc.fr/item/SM_2000_191_4_a4/
