Non-classical relaxation cycle of a~three-dimensional system of Lotka--Volterra equations
Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 567-581

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the well-known Belousov's reaction is the object of study. It is reasonable to assume that one coefficient in the corresponding system of differential equations is large, while the other parameters are finite. Non-standard tools taking account of the peculiarities of the problem bring one to a theorem on the existence of a relaxation cycle, allowing at the same time to reveal its characteristic features.
@article{SM_2000_191_4_a4,
     author = {Yu. S. Kolesov},
     title = {Non-classical relaxation cycle of a~three-dimensional system of {Lotka--Volterra} equations},
     journal = {Sbornik. Mathematics},
     pages = {567--581},
     publisher = {mathdoc},
     volume = {191},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_4_a4/}
}
TY  - JOUR
AU  - Yu. S. Kolesov
TI  - Non-classical relaxation cycle of a~three-dimensional system of Lotka--Volterra equations
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 567
EP  - 581
VL  - 191
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_4_a4/
LA  - en
ID  - SM_2000_191_4_a4
ER  - 
%0 Journal Article
%A Yu. S. Kolesov
%T Non-classical relaxation cycle of a~three-dimensional system of Lotka--Volterra equations
%J Sbornik. Mathematics
%D 2000
%P 567-581
%V 191
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_4_a4/
%G en
%F SM_2000_191_4_a4
Yu. S. Kolesov. Non-classical relaxation cycle of a~three-dimensional system of Lotka--Volterra equations. Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 567-581. http://geodesic.mathdoc.fr/item/SM_2000_191_4_a4/