Hamiltonian structures of the first variation equations and symplectic connections
Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 477-502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions in terms of symplectic connections, ensuring that the first variation equation of a Hamiltonian system along a fixed invariant symplectic submanifold is also a Hamiltonian system with respect to some admissible symplectic structure are obtained. The class of admissible symplectic structures is distinguished by means of the natural condition of compatibility with the symplectic 2-form in the ambient space. Possible obstructions to the existence of a Hamiltonian structure on the first variation equation are investigated.
@article{SM_2000_191_4_a0,
     author = {Yu. M. Vorob'ev},
     title = {Hamiltonian structures of the~first variation equations and symplectic connections},
     journal = {Sbornik. Mathematics},
     pages = {477--502},
     year = {2000},
     volume = {191},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_4_a0/}
}
TY  - JOUR
AU  - Yu. M. Vorob'ev
TI  - Hamiltonian structures of the first variation equations and symplectic connections
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 477
EP  - 502
VL  - 191
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_4_a0/
LA  - en
ID  - SM_2000_191_4_a0
ER  - 
%0 Journal Article
%A Yu. M. Vorob'ev
%T Hamiltonian structures of the first variation equations and symplectic connections
%J Sbornik. Mathematics
%D 2000
%P 477-502
%V 191
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2000_191_4_a0/
%G en
%F SM_2000_191_4_a0
Yu. M. Vorob'ev. Hamiltonian structures of the first variation equations and symplectic connections. Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 477-502. http://geodesic.mathdoc.fr/item/SM_2000_191_4_a0/

[1] Buslaev V. S., Nalimova E. A., “Formula sleda v obschei gamiltonovoi mekhanike”, TMF, 60:3 (1984), 344–355 | MR | Zbl

[2] Marsden J., Ratiu T., Rangel G., “Symplectic connections and the linearization of Hamiltonian systems”, Proc. Roy. Soc. Edinburgh Sect. A, 117 (1991), 329–380 | MR | Zbl

[3] Vorobev Yu. M., “Kompleksnyi rostok Maslova, porozhdennyi lineinymi svyaznostyami”, Matem. zametki, 48:6 (1990), 29–37 | MR | Zbl

[4] Karasev M. V., Vorobjev Yu. M., “Linear connections for Hamiltonian dynamics over isotropic submanifold”, Seminar on dynamical systems (Euler International Mathematical Institut, St. Petersburg, Russia, October 14–25 and November 18–29, 1991), Progr. Nonlinear Differential Equations Appl., 12, 1994, 235–252 | MR | Zbl

[5] Karasev M. V., Vorobjev Yu. M., “Symplectic curvature and Arnold form over an isotropic submanifold”, J. Math. Sci., 82:6 (1996), 3789–3799 | DOI | MR | Zbl

[6] Karasev M. V., Vorobjev Yu. M., “Integral representations over isotropic submanifolds and equations of zero curvature”, Adv. Math., 135:2 (1998), 220–286 | DOI | MR | Zbl

[7] Karasev M. V., Vorobjev Yu. M., “Adapted connections, Hamilton dynamics, geometric phases, and quantization over isotropic submanifolds”, Amer. Math. Soc. Transl. Ser. 2, 187 (1998), 203–326 | MR | Zbl

[8] Sternberg S., “Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang–Mills field”, Proc. Nat. Acad. Sci. USA, 74:12 (1977), 5253–5254 | DOI | MR | Zbl

[9] Bott R., “Lectures on characteristic classes and foliations”, Lecture Notes in Math., 279, 1972, 1–94 | MR | Zbl

[10] Johnson R. A., Sell G. R., “Smoothness of spectral subbundles and reducibility of quasi periodic linear differential systems”, J. Differential Equations, 41 (1981), 262–288 | DOI | MR | Zbl

[11] Eliasson L. H., “Floquet solution for the 1-dimensional quasi-periodic Schrödinger equation”, Comm. Math. Phys., 146 (1992), 447–482 | DOI | MR | Zbl

[12] Kuksin S. B., “An infinitesimal Liouville–Arnold theorem as a criterion of reducibility for variational Hamiltonian equations”, Chaos Solitons Fractals, 2:3 (1992), 259–269 | DOI | MR | Zbl

[13] Nekhoroshev N. N., “Peremennye deistvie-ugol i ikh obobschenie”, Tr. MMO, 26, URSS, M., 1976, 181–198

[14] Mischenko A. S., Fomenko A. T., “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozh., 12:2 (1978), 46–56 | MR | Zbl

[15] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[16] Dubrovin V. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1986 | MR

[17] Weinstein A., Lectures on symplectic manifolds, Amer. Math. Soc., Providence, RI, 1977 | MR | Zbl

[18] Arnold V. I., Matematicheskie metody, Nauka, M., 1989 | MR

[19] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UdGU, Izhevsk, 1995 | MR | Zbl

[20] Bolsinov A. V., Fomenko A. T., Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR

[21] Dobrokhotov S. Yu., “Integrirovanie v kvadraturakh $2n$-mernykh gamiltonovykh sistem s $n$ izvestnymi kosoortogonalnymi resheniyami”, UMN, 53:2 (1998), 143–144 | MR | Zbl