Hamiltonian structures of the~first variation equations and symplectic connections
Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 477-502

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions in terms of symplectic connections, ensuring that the first variation equation of a Hamiltonian system along a fixed invariant symplectic submanifold is also a Hamiltonian system with respect to some admissible symplectic structure are obtained. The class of admissible symplectic structures is distinguished by means of the natural condition of compatibility with the symplectic 2-form in the ambient space. Possible obstructions to the existence of a Hamiltonian structure on the first variation equation are investigated.
@article{SM_2000_191_4_a0,
     author = {Yu. M. Vorob'ev},
     title = {Hamiltonian structures of the~first variation equations and symplectic connections},
     journal = {Sbornik. Mathematics},
     pages = {477--502},
     publisher = {mathdoc},
     volume = {191},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_4_a0/}
}
TY  - JOUR
AU  - Yu. M. Vorob'ev
TI  - Hamiltonian structures of the~first variation equations and symplectic connections
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 477
EP  - 502
VL  - 191
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_4_a0/
LA  - en
ID  - SM_2000_191_4_a0
ER  - 
%0 Journal Article
%A Yu. M. Vorob'ev
%T Hamiltonian structures of the~first variation equations and symplectic connections
%J Sbornik. Mathematics
%D 2000
%P 477-502
%V 191
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_4_a0/
%G en
%F SM_2000_191_4_a0
Yu. M. Vorob'ev. Hamiltonian structures of the~first variation equations and symplectic connections. Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 477-502. http://geodesic.mathdoc.fr/item/SM_2000_191_4_a0/