@article{SM_2000_191_4_a0,
author = {Yu. M. Vorob'ev},
title = {Hamiltonian structures of the~first variation equations and symplectic connections},
journal = {Sbornik. Mathematics},
pages = {477--502},
year = {2000},
volume = {191},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_4_a0/}
}
Yu. M. Vorob'ev. Hamiltonian structures of the first variation equations and symplectic connections. Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 477-502. http://geodesic.mathdoc.fr/item/SM_2000_191_4_a0/
[1] Buslaev V. S., Nalimova E. A., “Formula sleda v obschei gamiltonovoi mekhanike”, TMF, 60:3 (1984), 344–355 | MR | Zbl
[2] Marsden J., Ratiu T., Rangel G., “Symplectic connections and the linearization of Hamiltonian systems”, Proc. Roy. Soc. Edinburgh Sect. A, 117 (1991), 329–380 | MR | Zbl
[3] Vorobev Yu. M., “Kompleksnyi rostok Maslova, porozhdennyi lineinymi svyaznostyami”, Matem. zametki, 48:6 (1990), 29–37 | MR | Zbl
[4] Karasev M. V., Vorobjev Yu. M., “Linear connections for Hamiltonian dynamics over isotropic submanifold”, Seminar on dynamical systems (Euler International Mathematical Institut, St. Petersburg, Russia, October 14–25 and November 18–29, 1991), Progr. Nonlinear Differential Equations Appl., 12, 1994, 235–252 | MR | Zbl
[5] Karasev M. V., Vorobjev Yu. M., “Symplectic curvature and Arnold form over an isotropic submanifold”, J. Math. Sci., 82:6 (1996), 3789–3799 | DOI | MR | Zbl
[6] Karasev M. V., Vorobjev Yu. M., “Integral representations over isotropic submanifolds and equations of zero curvature”, Adv. Math., 135:2 (1998), 220–286 | DOI | MR | Zbl
[7] Karasev M. V., Vorobjev Yu. M., “Adapted connections, Hamilton dynamics, geometric phases, and quantization over isotropic submanifolds”, Amer. Math. Soc. Transl. Ser. 2, 187 (1998), 203–326 | MR | Zbl
[8] Sternberg S., “Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang–Mills field”, Proc. Nat. Acad. Sci. USA, 74:12 (1977), 5253–5254 | DOI | MR | Zbl
[9] Bott R., “Lectures on characteristic classes and foliations”, Lecture Notes in Math., 279, 1972, 1–94 | MR | Zbl
[10] Johnson R. A., Sell G. R., “Smoothness of spectral subbundles and reducibility of quasi periodic linear differential systems”, J. Differential Equations, 41 (1981), 262–288 | DOI | MR | Zbl
[11] Eliasson L. H., “Floquet solution for the 1-dimensional quasi-periodic Schrödinger equation”, Comm. Math. Phys., 146 (1992), 447–482 | DOI | MR | Zbl
[12] Kuksin S. B., “An infinitesimal Liouville–Arnold theorem as a criterion of reducibility for variational Hamiltonian equations”, Chaos Solitons Fractals, 2:3 (1992), 259–269 | DOI | MR | Zbl
[13] Nekhoroshev N. N., “Peremennye deistvie-ugol i ikh obobschenie”, Tr. MMO, 26, URSS, M., 1976, 181–198
[14] Mischenko A. S., Fomenko A. T., “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozh., 12:2 (1978), 46–56 | MR | Zbl
[15] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981
[16] Dubrovin V. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1986 | MR
[17] Weinstein A., Lectures on symplectic manifolds, Amer. Math. Soc., Providence, RI, 1977 | MR | Zbl
[18] Arnold V. I., Matematicheskie metody, Nauka, M., 1989 | MR
[19] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UdGU, Izhevsk, 1995 | MR | Zbl
[20] Bolsinov A. V., Fomenko A. T., Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR
[21] Dobrokhotov S. Yu., “Integrirovanie v kvadraturakh $2n$-mernykh gamiltonovykh sistem s $n$ izvestnymi kosoortogonalnymi resheniyami”, UMN, 53:2 (1998), 143–144 | MR | Zbl