Unique continuation of solutions of differential equations with weighted derivatives
Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 431-458

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains a generalization of Calderon's theorem on the local uniqueness of the solutions of the Cauchy problem for differential equations with weighted derivatives. Anisotropic estimates of Carleman type are obtained. A class of differential equations with weighted derivatives is distinguished in which germs of solutions have unique continuation with respect to part of the variables.
@article{SM_2000_191_3_a7,
     author = {N. A. Shananin},
     title = {Unique continuation of solutions of differential equations with weighted derivatives},
     journal = {Sbornik. Mathematics},
     pages = {431--458},
     publisher = {mathdoc},
     volume = {191},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_3_a7/}
}
TY  - JOUR
AU  - N. A. Shananin
TI  - Unique continuation of solutions of differential equations with weighted derivatives
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 431
EP  - 458
VL  - 191
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_3_a7/
LA  - en
ID  - SM_2000_191_3_a7
ER  - 
%0 Journal Article
%A N. A. Shananin
%T Unique continuation of solutions of differential equations with weighted derivatives
%J Sbornik. Mathematics
%D 2000
%P 431-458
%V 191
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_3_a7/
%G en
%F SM_2000_191_3_a7
N. A. Shananin. Unique continuation of solutions of differential equations with weighted derivatives. Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 431-458. http://geodesic.mathdoc.fr/item/SM_2000_191_3_a7/