@article{SM_2000_191_3_a6,
author = {A. V. Romanov},
title = {Finite-dimensional limiting dynamics for dissipative parabolic equations},
journal = {Sbornik. Mathematics},
pages = {415--429},
year = {2000},
volume = {191},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_3_a6/}
}
A. V. Romanov. Finite-dimensional limiting dynamics for dissipative parabolic equations. Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 415-429. http://geodesic.mathdoc.fr/item/SM_2000_191_3_a6/
[1] Hopf E., “A mathematical example displaying features of turbulence”, Comm. Pure Appl. Math., 1:4 (1948), 303–322 | DOI | MR | Zbl
[2] Mane R., “On the dimension of the compact invariant sets of certain non-linear maps”, Lecture Notes in Math., 898, 1981, 230–242 | MR | Zbl
[3] Romanov A. V., “Tochnye otsenki razmernosti inertsialnykh mnogoobrazii dlya nelineinykh parabolicheskikh uravnenii”, Izv. RAN. Ser. matem., 57:4 (1993), 36–54 | MR | Zbl
[4] Chueshov I. D., “Globalnye attraktory v nelineinykh zadachakh matematicheskoi fiziki”, UMN, 48:3 (1993), 135–162 | MR | Zbl
[5] Chueshov I. D., Vvedenie v teoriyu inertsialnykh mnogoobrazii, Izd-vo KhGU, Kharkov, 1992 | MR
[6] Mallet-Paret J., Sell G. R., Shao Z., “Obstructions to the existence of normally hyperbolic inertial manifolds”, Indiana Univ. Math. J., 42:3 (1993), 1027–1055 | DOI | MR | Zbl
[7] Mora X., Sola-Morales J., “Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations”, Dynamics of infinite dimensional systems, Springer-Verlag, New York, 1987, 187–210 | MR
[8] Foias C., Olson E., “Finite fractal dimension and Hölder–Lipschitz parametrization”, Indiana Univ. Math. J., 45:3 (1996), 603–616 | DOI | MR | Zbl
[9] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR
[10] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl
[11] Krein S. G. (red.), Funktsionalnyi analiz, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973
[12] Stein E. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[13] Eden A., Foias C., Nicolaenko B., Temam R., Exponential attractors for dissipative evolution equations, Wiley, Chichester, 1994 | MR | Zbl
[14] Robinson J. C., “All possible chaotic dynamics can be approximated in three dimensions”, Nonlinearity, 11:3 (1998), 529–545 | DOI | MR | Zbl
[15] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Zap. nauchn. sem. LOMI, 27, LOMI, L., 1972, 91–115 | MR
[16] Foias C., Prodi G., “Sur le comportement global des solutions non-stationaires des equations de Navier–Stokes en dimension 2”, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1–34 | MR | Zbl
[17] Brunovsky P., Terescak I., “Regularity of invariant manifolds”, J. Dynam. Differential Equations, 3:3 (1991), 313–337 | DOI | MR | Zbl
[18] Romanov A. V., “Konechnomernaya predelnaya dinamika parabolicheskikh uravnenii”, UMN, 53:4 (1998), 173
[19] Romanov A. V., “Konechnomernost dinamiki na attraktore dlya polulineinykh parabolicheskikh uravnenii”, Optimalnoe upravlenie i dobavleniya, Mezhdunarodnaya konferentsiya, posvyaschennaya 90-letiyu so dnya rozhdeniya L. S. Pontryagina. Tezisy dokladov, Izd-vo MGU, M., 1998, 324–325