Asymptotic behaviour of the partition function
Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 381-414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a pair of positive integers $m$ and $d$ such that $2\leqslant m\leqslant d$, for integer $n\geqslant 0$ the quantity $b_{m,d}(n)$, called the partition function is considered; this by definition is equal to the cardinality of the set $$ \biggl\{(a_0,a_1,\dots):n=\sum_ka_km^k,\ a_k\in\{0,\dots,d-1\},\ k\geqslant 0\biggr\}. $$ The properties of $b_{m,d}(n)$ and its asymptotic behaviour as $n\to\infty$ are studied. A geometric approach to this problem is put forward. It is shown that $$ C_1n^{\lambda_1}\leqslant b_{m,d}(n)\leqslant C_2n^{\lambda_2}, $$ for sufficiently large $n$, where $C_1$ and $C_2$ are positive constants depending on $m$ and $d$, and $\lambda_1=\varliminf\limits_{n\to\infty}\dfrac{\log b(n)}{\log n}$ and $\lambda_2=\varlimsup\limits_{n\to\infty}\dfrac{\log b(n)}{\log n}$ are characteristics of the exponential growth of the partition function. For some pair $(m,d)$ the exponents $\lambda_1$ and $\lambda_2$ are calculated as the logarithms of certain algebraic numbers; for other pairs the problem is reduced to finding the joint spectral radius of a suitable collection of finite-dimensional linear operators. Estimates of the growth exponents and the constants $C_1$ and $C_2$ are obtained.
@article{SM_2000_191_3_a5,
     author = {V. Yu. Protasov},
     title = {Asymptotic behaviour of the~partition function},
     journal = {Sbornik. Mathematics},
     pages = {381--414},
     year = {2000},
     volume = {191},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_3_a5/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Asymptotic behaviour of the partition function
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 381
EP  - 414
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_3_a5/
LA  - en
ID  - SM_2000_191_3_a5
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Asymptotic behaviour of the partition function
%J Sbornik. Mathematics
%D 2000
%P 381-414
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2000_191_3_a5/
%G en
%F SM_2000_191_3_a5
V. Yu. Protasov. Asymptotic behaviour of the partition function. Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 381-414. http://geodesic.mathdoc.fr/item/SM_2000_191_3_a5/

[1] Euler L., Introductio in analysin infinitorum, Opera Omnia Series Prima Opera Math., 8, Teubner, Leypzig, 1922

[2] Reznick B., “Some binary partition functions”, Analytic number theory, Proc. Conf. in Honor of Paul T. Bateman (Urbana/IL (USA), 1989), Prog. Math., 85, 1990, 451–477 | MR | Zbl

[3] Stern M. A., “Über eine zahlentheoretische Funktion”, J. für Math., 55 (1858), 193–220 | Zbl

[4] Klosinsky L. F., Alexanderson G. L., Hillman A. P., “The William Lowell Putman mathematical competition”, Amer. Math. Monthly, 91 (1984), 487–495 | DOI | MR

[5] Mahler K., “On a special functional equation”, J. London Math. Soc., 15:2 (1940), 115–123 | DOI | MR | Zbl

[6] de Bruijn N. G., “On Mahler's partition problem”, Indag. Math. (N.S.), 10 (1948), 210–220

[7] Knuth D. E., “An almost linear recurrence”, Fibonacci Quart., 4 (1966), 117–128 | MR | Zbl

[8] Rota G. C., Strang G., “A note on the joint spectral radius”, Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 63 (1960), 379–381 | MR | Zbl

[9] Lagarias J. C., Wang Y., “The finiteness conjecture for the generalized spectral radius of a set of matrices”, Linear Algebra Appl., 214 (1995), 17–42 | DOI | MR | Zbl

[10] Protasov V. Yu., “Sovmestnyi spektralnyi radius i invariantnye mnozhestva neskolkikh lineinykh operatorov”, Fundament. i prikl. matem., 2 (1996), 205–271 | MR

[11] Berger M. A., Wang Y., “Bounded semi-groups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl

[12] Collela D., Heil C., “Characterizations of scaling functions”, SIAM J. Matrix Anal. Appl., 15 (1994), 496–518 | DOI | MR

[13] Daubechies I., Lagarias J. C., “Two-scale difference equations. II: Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal., 23:4 (1992), 1031–1079 | DOI | MR | Zbl

[14] Micchelli C. A., Prautzsch H., “Uniform refinement of curves”, Linear Algebra Appl., 114/115 (1989), 841–870 | DOI | MR | Zbl

[15] Schaefer H. H., Wolff M. P., Topological vector spaces, Springer-Verlag, New York, 1999 | MR

[16] Churchhouse R. F., “Congruence properties of the binary partition function”, Proc. Comb. Phil. Soc., 66 (1969), 371–376 | DOI | MR | Zbl

[17] Tanturri A., “Sul numero delle partizioni d'un numero in potenze di 2”, Atti. Accad. Naz. Lincei, 27 (1918), 399–403 | Zbl