Asymptotic behaviour of the~partition function
Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 381-414

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a pair of positive integers $m$ and $d$ such that $2\leqslant m\leqslant d$, for integer $n\geqslant 0$ the quantity $b_{m,d}(n)$, called the partition function is considered; this by definition is equal to the cardinality of the set $$ \biggl\{(a_0,a_1,\dots):n=\sum_ka_km^k,\ a_k\in\{0,\dots,d-1\},\ k\geqslant 0\biggr\}. $$ The properties of $b_{m,d}(n)$ and its asymptotic behaviour as $n\to\infty$ are studied. A geometric approach to this problem is put forward. It is shown that $$ C_1n^{\lambda_1}\leqslant b_{m,d}(n)\leqslant C_2n^{\lambda_2}, $$ for sufficiently large $n$, where $C_1$ and $C_2$ are positive constants depending on $m$ and $d$, and $\lambda_1=\varliminf\limits_{n\to\infty}\dfrac{\log b(n)}{\log n}$ and $\lambda_2=\varlimsup\limits_{n\to\infty}\dfrac{\log b(n)}{\log n}$ are characteristics of the exponential growth of the partition function. For some pair $(m,d)$ the exponents $\lambda_1$ and $\lambda_2$ are calculated as the logarithms of certain algebraic numbers; for other pairs the problem is reduced to finding the joint spectral radius of a suitable collection of finite-dimensional linear operators. Estimates of the growth exponents and the constants $C_1$ and $C_2$ are obtained.
@article{SM_2000_191_3_a5,
     author = {V. Yu. Protasov},
     title = {Asymptotic behaviour of the~partition function},
     journal = {Sbornik. Mathematics},
     pages = {381--414},
     publisher = {mathdoc},
     volume = {191},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_3_a5/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Asymptotic behaviour of the~partition function
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 381
EP  - 414
VL  - 191
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_3_a5/
LA  - en
ID  - SM_2000_191_3_a5
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Asymptotic behaviour of the~partition function
%J Sbornik. Mathematics
%D 2000
%P 381-414
%V 191
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_3_a5/
%G en
%F SM_2000_191_3_a5
V. Yu. Protasov. Asymptotic behaviour of the~partition function. Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 381-414. http://geodesic.mathdoc.fr/item/SM_2000_191_3_a5/