Examples of explicit calculation of the inductive limit of a family of Lie algebras
Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 369-379 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inductive limits of some families of Lie algebras are considered. Under discussion are algebras of vector fields on a manifold that preserve a volume form or a symplectic form and have supports in coordinate neighbourhoods. The family of all commutative subalgebras of the Lie algebra of the skew-Hermitian matrices of order larger than two is studied. The explicit form of the inductive limits is indicated.
@article{SM_2000_191_3_a4,
     author = {R. S. Ismagilov},
     title = {Examples of explicit calculation of the~inductive limit of a~family of {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {369--379},
     year = {2000},
     volume = {191},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_3_a4/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - Examples of explicit calculation of the inductive limit of a family of Lie algebras
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 369
EP  - 379
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_3_a4/
LA  - en
ID  - SM_2000_191_3_a4
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T Examples of explicit calculation of the inductive limit of a family of Lie algebras
%J Sbornik. Mathematics
%D 2000
%P 369-379
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2000_191_3_a4/
%G en
%F SM_2000_191_3_a4
R. S. Ismagilov. Examples of explicit calculation of the inductive limit of a family of Lie algebras. Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 369-379. http://geodesic.mathdoc.fr/item/SM_2000_191_3_a4/

[1] Serr Zh.-P., “Derevya, amalgamy i $\operatorname{SL}_2$”, Matematika, 18:1 (1974), 3–51 | Zbl

[2] Ismagilov R. S., “O gruppe diffeomorfizmov, sokhranyayuschikh ob'em”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 831–867 | MR | Zbl

[3] Kirillov A. A., “La géometrie des moments pour les groupes de difféomorphismes”, Operator algebras, unitary representations, enveloping algebras, and invariant theory, Proc. Colloq. in Honour of J. Dixmier (Paris/Fr. 1989), Prog. Math., 92, 1990, 73–83 | MR | Zbl

[4] Gleason A. M., “Measures on the closed subspaces of a Hilbert space”, J. Math. Mech., 6:6 (1957), 885–895 | MR

[5] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973