Riesz basis property of the system of eigenfunctions for a non-linear problem of Sturm–Liouville type
Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 359-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a non-linear eigenvalue problem similar to a linear Sturm–Liouville problem the properties of the spectrum and the eigenfunctions are analysed. The system of eigenfunctions is shown to be a Riesz basis in $L_2$.
@article{SM_2000_191_3_a3,
     author = {P. E. Zhidkov},
     title = {Riesz basis property of the~system of eigenfunctions for a~non-linear problem of {Sturm{\textendash}Liouville} type},
     journal = {Sbornik. Mathematics},
     pages = {359--368},
     year = {2000},
     volume = {191},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_3_a3/}
}
TY  - JOUR
AU  - P. E. Zhidkov
TI  - Riesz basis property of the system of eigenfunctions for a non-linear problem of Sturm–Liouville type
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 359
EP  - 368
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_3_a3/
LA  - en
ID  - SM_2000_191_3_a3
ER  - 
%0 Journal Article
%A P. E. Zhidkov
%T Riesz basis property of the system of eigenfunctions for a non-linear problem of Sturm–Liouville type
%J Sbornik. Mathematics
%D 2000
%P 359-368
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2000_191_3_a3/
%G en
%F SM_2000_191_3_a3
P. E. Zhidkov. Riesz basis property of the system of eigenfunctions for a non-linear problem of Sturm–Liouville type. Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 359-368. http://geodesic.mathdoc.fr/item/SM_2000_191_3_a3/

[1] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[2] Zhidkov P. E., “O polnote sistem sobstvennykh funktsii operatora Shturma–Liuvillya s potentsialom, zavisyaschim ot spektralnogo parametra, i nekotoroi nelineinoi zadachi”, Matem. sb., 188:7 (1997), 123–138 | MR | Zbl

[3] Zhidkov P. E., Eigenfunction expansions associated with a nonlinear Schrödinger equation, Joint Inst. Nuclear Research Comm. E5-98-61, Dubna, 1998 | MR

[4] Bari N. K., “O bazisakh v gilbertovom prostranstve”, Dokl. AN SSSR, 54:5 (1946), 383–386 | MR

[5] Bari N. K., “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uchenye zapiski MGU. Matematika, 148 (1951), 69–107 | MR

[6] Guter R. S., Ulyanov P. L., “O novykh rezultatakh v teorii ortogonalnykh ryadov”, Dopolnenie v knige: Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Gos. izd. fiz.-mat. lit-ry, M., 1958 | MR

[7] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[8] Makhmudov A. P., Osnovy nelineinogo spektralnogo analiza, Izd-vo Azerbaidzhanskogo gos. un-ta im. S. M. Kirova, Baku, 1984 | MR

[9] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR | Zbl

[10] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR