Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 341-358
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Cauchy problem with non-negative continuous initial function for the equation
$$
u_t=\Delta u^m-u^p, \qquad (x,t)\in S=\mathbb R^N\times\mathbb R_+,
$$
is considered for  $0$, $p$. For generalized solutions of this problem with initial data increasing at infinity several results on their behaviour as $t\to\infty$ are established.
			
            
            
            
          
        
      @article{SM_2000_191_3_a2,
     author = {A. L. Gladkov},
     title = {Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities},
     journal = {Sbornik. Mathematics},
     pages = {341--358},
     publisher = {mathdoc},
     volume = {191},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/}
}
                      
                      
                    TY - JOUR AU - A. L. Gladkov TI - Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities JO - Sbornik. Mathematics PY - 2000 SP - 341 EP - 358 VL - 191 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/ LA - en ID - SM_2000_191_3_a2 ER -
A. L. Gladkov. Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities. Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 341-358. http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/
