Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities
Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 341-358

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem with non-negative continuous initial function for the equation $$ u_t=\Delta u^m-u^p, \qquad (x,t)\in S=\mathbb R^N\times\mathbb R_+, $$ is considered for $0$, $p$. For generalized solutions of this problem with initial data increasing at infinity several results on their behaviour as $t\to\infty$ are established.
@article{SM_2000_191_3_a2,
     author = {A. L. Gladkov},
     title = {Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities},
     journal = {Sbornik. Mathematics},
     pages = {341--358},
     publisher = {mathdoc},
     volume = {191},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/}
}
TY  - JOUR
AU  - A. L. Gladkov
TI  - Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 341
EP  - 358
VL  - 191
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/
LA  - en
ID  - SM_2000_191_3_a2
ER  - 
%0 Journal Article
%A A. L. Gladkov
%T Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities
%J Sbornik. Mathematics
%D 2000
%P 341-358
%V 191
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/
%G en
%F SM_2000_191_3_a2
A. L. Gladkov. Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities. Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 341-358. http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/