Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities
Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 341-358 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem with non-negative continuous initial function for the equation $$ u_t=\Delta u^m-u^p, \qquad (x,t)\in S=\mathbb R^N\times\mathbb R_+, $$ is considered for $0, $p. For generalized solutions of this problem with initial data increasing at infinity several results on their behaviour as $t\to\infty$ are established.
@article{SM_2000_191_3_a2,
     author = {A. L. Gladkov},
     title = {Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities},
     journal = {Sbornik. Mathematics},
     pages = {341--358},
     year = {2000},
     volume = {191},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/}
}
TY  - JOUR
AU  - A. L. Gladkov
TI  - Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 341
EP  - 358
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/
LA  - en
ID  - SM_2000_191_3_a2
ER  - 
%0 Journal Article
%A A. L. Gladkov
%T Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities
%J Sbornik. Mathematics
%D 2000
%P 341-358
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/
%G en
%F SM_2000_191_3_a2
A. L. Gladkov. Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities. Sbornik. Mathematics, Tome 191 (2000) no. 3, pp. 341-358. http://geodesic.mathdoc.fr/item/SM_2000_191_3_a2/

[1] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | MR | Zbl

[2] Herrero M. A., Velazquez J. J. L., “On the dynamics of a semilinear heat equation with strong absorption”, Comm. Partial Differential Equations, 14:12 (1989), 1653–1715 | DOI | MR | Zbl

[3] Kalashnikov A. S., “O kvazilineinykh vyrozhdayuschikhsya parabolicheskikh uravneniyakh s singulyarnymi mladshimi chlenami i rastuschimi nachalnymi dannymi”, Differents. uravneniya, 29:6 (1993), 999–1009 | MR | Zbl

[4] Herrero M. A., Pierre M., “The Cauchy problem for $u_t=\Delta u^m$ when $01$”, Trans. Amer. Math. Soc., 291:1 (1985), 145–158 | DOI | MR | Zbl

[5] Gladkov A. L., “O neogranichennykh resheniyakh nelineinogo uravneniya teploprovodnosti s silnoi konvektsiei na beskonechnosti”, ZhVM i MF, 36:10 (1996), 73–86 | MR | Zbl

[6] Kamin S., Peletier L. A., Vazquez J. L., “A nonlinear diffusion-absorption equation with unbounded initial data”, Nonlinear diffusion equations and their equilibrium states, Proc. 3rd Conf. (Gregynog/UK, 1989), Progr. Nonlinear Differential Equations Appl., 7, 1992, 243–263 | MR | Zbl

[7] McLeod J. B., Peletier L. A., Vazquez J. L., “Solutions of a nonlinear ODE appearing in the theory of diffusion and absorption”, Differential and Integral Equations, 4:1 (1991), 1–14 | MR | Zbl

[8] Gladkov A. L., “Zadacha Koshi dlya nekotorykh vyrozhdayuschikhsya kvazilineinykh parabolicheskikh uravnenii s pogloscheniem”, Sib. matem. zhurn., 34:1 (1993), 47–64 | MR | Zbl

[9] Vazquez J. L., Walias M., “Existence and uniqueness of solutions of diffusion-absorption equations with general data”, Differential and Integral Equations, 7:1 (1994), 15–36 | MR | Zbl

[10] Gilding B. H., Kersner R., “The characterization of reaction-convection-diffusion processes by travelling waves”, J. Differential Equations, 124:1 (1996), 27–79 | DOI | MR | Zbl

[11] Gladkov A. L., “O zadache Koshi v klassakh rastuschikh funktsii dlya uravneniya filtratsii s konvektsiei”, Matem. sb., 186:6 (1995), 35–56 | MR | Zbl