Contact of a~free boundary with a~fixed boundary
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 307-315

Voir la notice de l'article provenant de la source Math-Net.Ru

For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the $C^1$-regularity of the boundary $\partial\mathscr N$ of the non-coincidence set is refined. It is shown that the previously imposed Lipschitz condition on $\partial\mathscr N$ can be dispensed with.
@article{SM_2000_191_2_a6,
     author = {N. N. Ural'tseva},
     title = {Contact of a~free boundary with a~fixed boundary},
     journal = {Sbornik. Mathematics},
     pages = {307--315},
     publisher = {mathdoc},
     volume = {191},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a6/}
}
TY  - JOUR
AU  - N. N. Ural'tseva
TI  - Contact of a~free boundary with a~fixed boundary
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 307
EP  - 315
VL  - 191
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a6/
LA  - en
ID  - SM_2000_191_2_a6
ER  - 
%0 Journal Article
%A N. N. Ural'tseva
%T Contact of a~free boundary with a~fixed boundary
%J Sbornik. Mathematics
%D 2000
%P 307-315
%V 191
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_2_a6/
%G en
%F SM_2000_191_2_a6
N. N. Ural'tseva. Contact of a~free boundary with a~fixed boundary. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 307-315. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a6/