On homogenization of a~variational inequality for an~elastic body with periodically distributed fissures
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 291-306
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of small deformations of an elastic body with periodically distributed fissures, where one-sided constraints are imposed on the sides of the fissures; this problem is equivalent to a variational inequality. We prove that if the linear size of the period of the distribution of the fissures tends to zero, then the solutions of this problem converge in the $L^2$-norm to the solution of the homogenized problem, which is a non-linear boundary-value problem of elasticity theory for a domain without fissures.
@article{SM_2000_191_2_a5,
author = {S. E. Pastukhova},
title = {On homogenization of a~variational inequality for an~elastic body with periodically distributed fissures},
journal = {Sbornik. Mathematics},
pages = {291--306},
publisher = {mathdoc},
volume = {191},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/}
}
TY - JOUR AU - S. E. Pastukhova TI - On homogenization of a~variational inequality for an~elastic body with periodically distributed fissures JO - Sbornik. Mathematics PY - 2000 SP - 291 EP - 306 VL - 191 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/ LA - en ID - SM_2000_191_2_a5 ER -
S. E. Pastukhova. On homogenization of a~variational inequality for an~elastic body with periodically distributed fissures. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 291-306. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/