On homogenization of a variational inequality for an elastic body with periodically distributed fissures
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 291-306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of small deformations of an elastic body with periodically distributed fissures, where one-sided constraints are imposed on the sides of the fissures; this problem is equivalent to a variational inequality. We prove that if the linear size of the period of the distribution of the fissures tends to zero, then the solutions of this problem converge in the $L^2$-norm to the solution of the homogenized problem, which is a non-linear boundary-value problem of elasticity theory for a domain without fissures.
@article{SM_2000_191_2_a5,
     author = {S. E. Pastukhova},
     title = {On homogenization of a~variational inequality for an~elastic body with periodically distributed fissures},
     journal = {Sbornik. Mathematics},
     pages = {291--306},
     year = {2000},
     volume = {191},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - On homogenization of a variational inequality for an elastic body with periodically distributed fissures
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 291
EP  - 306
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/
LA  - en
ID  - SM_2000_191_2_a5
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T On homogenization of a variational inequality for an elastic body with periodically distributed fissures
%J Sbornik. Mathematics
%D 2000
%P 291-306
%V 191
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/
%G en
%F SM_2000_191_2_a5
S. E. Pastukhova. On homogenization of a variational inequality for an elastic body with periodically distributed fissures. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 291-306. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/

[1] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[2] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[3] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[4] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR | Zbl

[5] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[6] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990 | Zbl

[7] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[8] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[9] Zhikov V. V., “Ob usrednenii v perforirovannykh sluchainykh oblastyakh obschego vida”, Matem. zametki, 53:1 (1993), 41–58 | MR | Zbl

[10] Zhikov V. V., “Ob usrednenii nelineinykh variatsionnykh zadach v perforirovannykh oblastyakh”, Dokl. RAN, 345:2 (1995), 156–160 | MR | Zbl

[11] Zhikov V. V., Rychago M. E., “Usrednenie nelineinykh ellipticheskikh uravnenii vtorogo poryadka v perforirovannykh oblastyakh”, Izv. RAN. Ser. matem., 61:1 (1997), 69–88 | MR | Zbl

[12] Zhikov V. V., “On the homogenization of nonlinear variational problems in perforated domains”, Russian J. Math. Phys., 2:3 (1994), 393–408 | MR | Zbl

[13] Bogovskii M. E., “Reshenie pervoi kraevoi zadachi dlya uravneniya nerazryvnosti neszhimaemoi sredy”, Dokl. AN SSSR, 248:5 (1979), 1037–1040 | MR | Zbl