On homogenization of a~variational inequality for an~elastic body with periodically distributed fissures
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 291-306

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of small deformations of an elastic body with periodically distributed fissures, where one-sided constraints are imposed on the sides of the fissures; this problem is equivalent to a variational inequality. We prove that if the linear size of the period of the distribution of the fissures tends to zero, then the solutions of this problem converge in the $L^2$-norm to the solution of the homogenized problem, which is a non-linear boundary-value problem of elasticity theory for a domain without fissures.
@article{SM_2000_191_2_a5,
     author = {S. E. Pastukhova},
     title = {On homogenization of a~variational inequality for an~elastic body with periodically distributed fissures},
     journal = {Sbornik. Mathematics},
     pages = {291--306},
     publisher = {mathdoc},
     volume = {191},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - On homogenization of a~variational inequality for an~elastic body with periodically distributed fissures
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 291
EP  - 306
VL  - 191
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/
LA  - en
ID  - SM_2000_191_2_a5
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T On homogenization of a~variational inequality for an~elastic body with periodically distributed fissures
%J Sbornik. Mathematics
%D 2000
%P 291-306
%V 191
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/
%G en
%F SM_2000_191_2_a5
S. E. Pastukhova. On homogenization of a~variational inequality for an~elastic body with periodically distributed fissures. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 291-306. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a5/