Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the space $L_p(\Omega;\omega)$
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 275-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several conditions on the weight functions $v$ and $\omega$ are obtained that guarantee the embedding inequality $$ \|u\|_{L_p(\Omega;\omega)}\leqslant C\biggl[\biggl(\int_\Omega|\nabla_lu|^p\biggr)^{1/p}+\biggl(\int_\Omega|u|^pv\biggr)^{1/p}\biggr], \qquad 1<p<n/l. $$ Classes of weights $\omega$ and $v$ in which these conditions are both necessary and sufficient are described.
@article{SM_2000_191_2_a4,
     author = {L. K. Kusainova},
     title = {Embedding the weighted {Sobolev} space $W^l_p(\Omega;v)$ in the~space $L_p(\Omega;\omega)$},
     journal = {Sbornik. Mathematics},
     pages = {275--290},
     year = {2000},
     volume = {191},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a4/}
}
TY  - JOUR
AU  - L. K. Kusainova
TI  - Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the space $L_p(\Omega;\omega)$
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 275
EP  - 290
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a4/
LA  - en
ID  - SM_2000_191_2_a4
ER  - 
%0 Journal Article
%A L. K. Kusainova
%T Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the space $L_p(\Omega;\omega)$
%J Sbornik. Mathematics
%D 2000
%P 275-290
%V 191
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2000_191_2_a4/
%G en
%F SM_2000_191_2_a4
L. K. Kusainova. Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the space $L_p(\Omega;\omega)$. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 275-290. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a4/

[1] Adams D. R., “A trace inequality for generalized potentials”, Studia Math., 48:1 (1973), 99–105 | MR | Zbl

[2] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[3] Otelbaev M. O., “Teoremy vlozheniya prostranstv s vesom i ikh primeneniya k izucheniyu spektra operatora Shredingera”, Tr. MIAN, 150, Nauka, M., 1979, 265–305 | MR | Zbl

[4] Lizorkin P. I., Otelbaev M. O., “Teoremy vlozheniya i kompaktnosti dlya prostranstv sobolevskogo tipa s vesami. I; II”, Matem. sb., 108 (150) (1979), 358–377 ; 112 (154) (1980), 56–85 | MR | Zbl | MR | Zbl

[5] Dynkin E. M., Osilenker B. P., “Vesovye otsenki singulyarnykh integralov i ikh primeneniya”, Itogi nauki i tekhniki. Matem. analiz, 21, VINITI, M., 1983, 42–129 | MR

[6] Muckenhoupt B., Wheeden R. L., “Weighted norm inequalities for fractional integrals”, Trans. Amer. Math. Soc., 192 (1974), 261–274 | DOI | MR | Zbl

[7] Sawyer E. T., “Two weight norm inequalities for certain maximal and integral operators”, Lecture Notes in Math., 908, 1982, 102–127 | MR | Zbl

[8] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[9] Sobolev S. L., Nekotorye prilozheniya funktsionalnogo analiza v matem.fizike, Izd-vo LGU, L., 1950

[10] Mazya V. G., Shaposhnikova T. O., Multiplikatory v prostranstvakh differentsiruemykh funktsii, Izd-vo LGU, L., 1986 | MR | Zbl

[11] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978 | MR