Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the~space $L_p(\Omega;\omega)$
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 275-290

Voir la notice de l'article provenant de la source Math-Net.Ru

Several conditions on the weight functions $v$ and $\omega$ are obtained that guarantee the embedding inequality $$ \|u\|_{L_p(\Omega;\omega)}\leqslant C\biggl[\biggl(\int_\Omega|\nabla_lu|^p\biggr)^{1/p}+\biggl(\int_\Omega|u|^pv\biggr)^{1/p}\biggr], \qquad 1

/l. $$ Classes of weights $\omega$ and $v$ in which these conditions are both necessary and sufficient are described.
@article{SM_2000_191_2_a4,
     author = {L. K. Kusainova},
     title = {Embedding the weighted {Sobolev} space $W^l_p(\Omega;v)$ in the~space $L_p(\Omega;\omega)$},
     journal = {Sbornik. Mathematics},
     pages = {275--290},
     publisher = {mathdoc},
     volume = {191},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a4/}
}
TY  - JOUR
AU  - L. K. Kusainova
TI  - Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the~space $L_p(\Omega;\omega)$
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 275
EP  - 290
VL  - 191
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a4/
LA  - en
ID  - SM_2000_191_2_a4
ER  - 
%0 Journal Article
%A L. K. Kusainova
%T Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the~space $L_p(\Omega;\omega)$
%J Sbornik. Mathematics
%D 2000
%P 275-290
%V 191
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_2_a4/
%G en
%F SM_2000_191_2_a4
L. K. Kusainova. Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the~space $L_p(\Omega;\omega)$. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 275-290. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a4/