Polynomial integrals of reversible mechanical systems with a~two-dimensional torus as the~configuration space
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 189-208
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem considered here is that of finding conditions ensuring that a reversible Hamiltonian system has integrals polynomial in momenta. The kinetic energy is a zero-curvature Riemannian metric and the potential a smooth function on a two-dimensional torus. It is known that the existence of integrals of degrees 1 and 2 is related to the existence of cyclic coordinates and the separation of variables. The following conjecture is also well known: if there exists an integral of degree $n$ independent of the energy integral, then there exists an additional integral of degree 1 or 2. In the present paper this result is established for $n=3$ (which generalizes a theorem of Byalyi), and for $n=4$, $5$, and $6$ this is proved under some additional assumptions about the spectrum of the potential.
			
            
            
            
          
        
      @article{SM_2000_191_2_a1,
     author = {N. V. Denisova and V. V. Kozlov},
     title = {Polynomial integrals of reversible mechanical systems with a~two-dimensional torus as the~configuration space},
     journal = {Sbornik. Mathematics},
     pages = {189--208},
     publisher = {mathdoc},
     volume = {191},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a1/}
}
                      
                      
                    TY - JOUR AU - N. V. Denisova AU - V. V. Kozlov TI - Polynomial integrals of reversible mechanical systems with a~two-dimensional torus as the~configuration space JO - Sbornik. Mathematics PY - 2000 SP - 189 EP - 208 VL - 191 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a1/ LA - en ID - SM_2000_191_2_a1 ER -
%0 Journal Article %A N. V. Denisova %A V. V. Kozlov %T Polynomial integrals of reversible mechanical systems with a~two-dimensional torus as the~configuration space %J Sbornik. Mathematics %D 2000 %P 189-208 %V 191 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2000_191_2_a1/ %G en %F SM_2000_191_2_a1
N. V. Denisova; V. V. Kozlov. Polynomial integrals of reversible mechanical systems with a~two-dimensional torus as the~configuration space. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 189-208. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a1/
