Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 189-208
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem considered here is that of finding conditions ensuring that a reversible Hamiltonian system has integrals polynomial in momenta. The kinetic energy is a zero-curvature Riemannian metric and the potential a smooth function on a two-dimensional torus. It is known that the existence of integrals of degrees 1 and 2 is related to the existence of cyclic coordinates and the separation of variables. The following conjecture is also well known: if there exists an integral of degree $n$ independent of the energy integral, then there exists an additional integral of degree 1 or 2. In the present paper this result is established for $n=3$ (which generalizes a theorem of Byalyi), and for $n=4$, $5$, and $6$ this is proved under some additional assumptions about the spectrum of the potential.
@article{SM_2000_191_2_a1,
     author = {N. V. Denisova and V. V. Kozlov},
     title = {Polynomial integrals of reversible mechanical systems with a~two-dimensional torus as the~configuration space},
     journal = {Sbornik. Mathematics},
     pages = {189--208},
     year = {2000},
     volume = {191},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a1/}
}
TY  - JOUR
AU  - N. V. Denisova
AU  - V. V. Kozlov
TI  - Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 189
EP  - 208
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a1/
LA  - en
ID  - SM_2000_191_2_a1
ER  - 
%0 Journal Article
%A N. V. Denisova
%A V. V. Kozlov
%T Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space
%J Sbornik. Mathematics
%D 2000
%P 189-208
%V 191
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2000_191_2_a1/
%G en
%F SM_2000_191_2_a1
N. V. Denisova; V. V. Kozlov. Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 189-208. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a1/

[1] Birkgof Dzh. D., Dinamicheskie sistemy, Gostekhizdat, M.–L., 1941

[2] Kozlov V. V., “Integrable and non-integrable Hamiltonian systems”, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 8:1 (1989), 1–81 | MR | Zbl

[3] Denisova N. V., “Polinomialnye po skorosti integraly dinamicheskikh sistem s dvumya stepenyami svobody i toricheskim konfiguratsionnym prostranstvom”, Matem. zametki, 64:1 (1998), 37–44 | MR | Zbl

[4] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 994–1010 | MR | Zbl

[5] Babenko I. K., Nekhoroshev N. N., “O kompleksnykh strukturakh na dvumernykh torakh, dopuskayuschikh metriki s netrivialnym kvadratichnym integralom”, Matem. zametki, 58:5 (1995), 643–652 | MR | Zbl

[6] Kozlov V. V., Denisova N. V., “Polinomialnye integraly geodezicheskikh potokov na dvumernom tore”, Matem. sb., 185:12 (1994), 49–64 | MR | Zbl

[7] Kozlov V. V., Treschev D. V., “Ob integriruemosti gamiltonovykh sistem s toricheskim prostranstvom polozhenii”, Matem. sb., 135 (177):1 (1988), 119–138

[8] Byalyi M. L., “O polinomialnykh po impulsam pervykh integralakh dlya mekhanicheskoi sistemy na dvumernom tore”, Funkts. analiz i ego prilozh., 21:4 (1987), 64–65 | MR | Zbl

[9] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[10] Bolsinov A. V., Kozlov V. V., Fomenko A. T., “Printsip Mopertyui i geodezicheskie potoki na sfere, voznikayuschie iz integriruemykh sluchaev dinamiki tverdogo tela”, UMN, 50:3 (1995), 3–32 | MR | Zbl

[11] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UdGU, Izhevsk, 1995 | MR | Zbl

[12] Pidkuiko S. I., Stepin A. M., “Polinomialnye integraly gamiltonovykh sistem”, Dokl. AN SSSR, 239:1 (1978), 50–53 | MR | Zbl

[13] Kozlov V. V., “O polinomialnykh integralakh sistemy vzaimodeistvuyuschikh chastits”, Dokl. AN SSSR, 301:4 (1988), 785–788 | MR

[14] Puankare A., “Novye metody nebesnoi mekhaniki”, Izbrannye trudy, T. 1, Nauka, M., 1971