The method of loop molecules and the topology of the Kovalevskaya top
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 151-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for calculating topological invariants of the foliation of a phase space into invariant Liouville tori in the case of integrable Hamiltonian systems with two degrees of freedom is put forward. The structure of this foliation is completely described for the Kovalevskaya integrable case in rigid body dynamics.
@article{SM_2000_191_2_a0,
     author = {A. V. Bolsinov and P. H. Richter and A. T. Fomenko},
     title = {The method of loop molecules and the~topology of {the~Kovalevskaya} top},
     journal = {Sbornik. Mathematics},
     pages = {151--188},
     year = {2000},
     volume = {191},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a0/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - P. H. Richter
AU  - A. T. Fomenko
TI  - The method of loop molecules and the topology of the Kovalevskaya top
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 151
EP  - 188
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a0/
LA  - en
ID  - SM_2000_191_2_a0
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A P. H. Richter
%A A. T. Fomenko
%T The method of loop molecules and the topology of the Kovalevskaya top
%J Sbornik. Mathematics
%D 2000
%P 151-188
%V 191
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2000_191_2_a0/
%G en
%F SM_2000_191_2_a0
A. V. Bolsinov; P. H. Richter; A. T. Fomenko. The method of loop molecules and the topology of the Kovalevskaya top. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 151-188. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a0/

[1] Kowalevski S., “Sur le probléme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232 | DOI | MR

[2] Cooke R., The Mathematics of Sonya Kovalevskaya, Springer-Verlag, Berlin, 1984 | MR | Zbl

[3] Kowalevski S., “Sur une propriété du systéme d'équations différentielles qui définit la rotation d'un corps solide d'un point fixe”, Acta Math., 14 (1889), 81–93 | DOI | MR

[4] Klein F., Sommerfeld A., Über die Theorie des Kreisels, Teubner, Leipzig, 1910 | Zbl

[5] Kötter F., “Sur le cas traité par Mme Kowalevski de rotation d'un corps solide autour d'un point fixe”, Acta Math., 17 (1893), 209–264 | DOI | MR

[6] Bobenko A. I., Reyman A. G., Semenov-Tian-Shansky M. A., “The Kowalevski top 99 years later: a Lax pair, generalizations and explicit solutions”, Comm. Math. Phys., 122 (1989), 321–354 | DOI | MR

[7] Zhukovskii N. E., “Geometricheskaya interpretatsiya sluchaya dvizheniya tyazhelogo tverdogo tela vokrug fiksirovannoi tochkoi, rassmotrennogo Kovalevskoi”, Matem. sb., 19 (1896), 45–93

[8] Appelrot G. G., “Ne vpolne simmetrichnye tyazhelye giroskopy”, Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki, Izd-vo AN SSSR, M.–L., 1940, 61–157

[9] Kharlamov M. P., “Bifurkatsii sovmestnykh poverkhnostei urovnya pervykh integralov v zadache Kovalevskoi”, Prikl. matem. i mekh., 47:6 (1983), 737–743 | MR | Zbl

[10] Fomenko A. T., “Topological classification of all integrable Hamiltonian differential equations of general type with two degrees of freedom”, The geometry of Hamiltonian systems, eds. T. Ratiu, Springer-Verlag, New York, 1991, 131–339 | MR

[11] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[12] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, ed. A. T. Fomenko, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR

[13] Bolsinov A. V., Fomenko A. T., Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR

[14] Topalov P., “Vychislenie tonkogo invarianta Fomenko–Tsishanga dlya osnovnykh integriruemykh sluchaev dvizheniya tverdogo tela”, Matem. sb., 187:3 (1996), 143–160 | MR | Zbl

[15] Dullin H. R., Die Energieflächen des Kowalewskaja–Kreisels, Dissertation Univ. Bremen, Mainz Verlag, Aachen, 1994 | MR

[16] Dullin H. R., Juhnke M., Richter P. H., “Action integrals and energy surfaces of the Kovalevskaya top”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4:6 (1994), 1535–1562 | DOI | MR | Zbl

[17] Dullin H. R., Richter P. H., Veselov A. P., “Action variables of the Kovalevskaya top”, Regular and Chaotic Dynam., 3:3 (1998), 18–31 | DOI | MR | Zbl

[18] Adler M., van Moerbeke P., “The Kowalewski and Henon–Heiles motions as Manakov geodesic flows on $\operatorname{SO}(4)$. A two-dimensional family of Lax pairs”, Comm. Math. Phys., 113:4 (1988), 659–700 | DOI | MR

[19] Adler M., van Moerbeke P., “Kowalewski's asymptotic method, Kac-Moody algebras, and regularizations”, Comm. Math. Phys., 83 (1982), 83–106 | DOI | MR | Zbl

[20] Audin M., Silhol R., “Variétés Abéliennes Réelles et Toupie de Kowalewski”, Compositio Math., 87 (1993), 153–229 | MR | Zbl

[21] Yahia H. M., “New integrable cases in dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172 | DOI | MR

[22] Olshanetskii M. A., Perelomov A. M., Reiman A. G., Semenov-Tyan-Shanskii M. A., “Integriruemye sistemy, II”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundam. napravleniya, 16, VINITI, M., 1987, 86–226 | MR

[23] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya. Topologiya. Klassifikatsiya, T. 1, 2, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR | Zbl

[24] Lerman L. M., Umanskii Ya. L., “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb R^2$ v rasshirennykh okrestnostyakh prostykh osobykh tochek. I; II; III”, Matem. sb., 183:12 (1992), 141–176 ; 184:4 (1993), 105–138 ; 186:10 (1995), 89–102 | MR | Zbl | MR | Zbl | MR | Zbl

[25] Matveev V. S., “Integriruemye gamiltonovy sistemy s dvumya stepenyami svobody. Topologicheskoe stroenie nasyschennykh okrestnostei tochek tipa fokus-fokus i sedlo-sedlo”, Matem. sb., 187:4 (1996), 29–58 | MR | Zbl

[26] Nguen Tien Zung, “Decomposition of nondegenerate singularities of integrable Hamiltonian systems”, Lett. Math. Phys., 33:3 (1995), 187–193 | DOI | MR

[27] Bolsinov A. V., “Methods of calculation of the Fomenko–Zieschang invariant”, Topological classification of integrable systems, Adv. Soviet Math., 6, ed. A. T. Fomenko, Amer. Math. Soc., Providence, RI, 1991, 147–183 | MR

[28] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[29] Audin M., Spinning tops. A course on integrable systems, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[30] Cushman R. H., Bates L. M., Global aspects of classical integrable systems, Birkhäuser, Basel, 1997 | MR | Zbl

[31] Kalashnikov V. V. (ml.)., “Tipichnye integriruemye gamiltonovy sistemy na chetyrekhmernom simplekticheskom mnogoobrazii”, Izv. RAN. Ser. matem., 62:2 (1998), 49–74 | MR | Zbl

[32] Richter P. H., Dullin H. R., Wittek A., “Kovalevskaya Top. Film C1961”, Publ. Wiss. Film., Techn. Wiss./ Naturw., 13, Inst. Wiss. Film, Göttingen, 1997, 33–96