@article{SM_2000_191_1_a4,
author = {E. Yu. Panov},
title = {On the theory of generalized entropy solutions of {the~Cauchy} problem for a~class of non-strictly hyperbolic systems of conservation laws},
journal = {Sbornik. Mathematics},
pages = {121--150},
year = {2000},
volume = {191},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_1_a4/}
}
TY - JOUR AU - E. Yu. Panov TI - On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws JO - Sbornik. Mathematics PY - 2000 SP - 121 EP - 150 VL - 191 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2000_191_1_a4/ LA - en ID - SM_2000_191_1_a4 ER -
%0 Journal Article %A E. Yu. Panov %T On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws %J Sbornik. Mathematics %D 2000 %P 121-150 %V 191 %N 1 %U http://geodesic.mathdoc.fr/item/SM_2000_191_1_a4/ %G en %F SM_2000_191_1_a4
E. Yu. Panov. On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws. Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 121-150. http://geodesic.mathdoc.fr/item/SM_2000_191_1_a4/
[1] Panov E. Yu., “Ob odnom klasse sistem kvazilineinykh zakonov sokhraneniya”, Matem. sb., 188:5 (1997), 85–112 | MR | Zbl
[2] Panov E. Yu., “K nelokalnoi teorii obobschennykh entropiinykh reshenii zadachi Koshi dlya odnogo klassa giperbolicheskikh sistem zakonov sokhraneniya”, Izv. RAN. Ser. matem., 63:1 (1999), 133–184 | MR | Zbl
[3] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR | Zbl
[4] Lax P. D., “Hyperbolic systems of conservation laws”, Comm. Partial Differential Equations, 10 (1957), 537–566 | MR | Zbl
[5] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl
[6] Lax P. D., “Shock waves and entropy”, Shock waves and entropy, contributions to nonlinear functional analysis, ed. E. A. Zarantonello, Academic Press, New York, 1971, 603–634 | MR
[7] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl
[8] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII (N.S.), 15 (1994), 31–53 | MR
[9] Benilan F., Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka s nepreryvnymi nelineinostyami”, Dokl. AN, 339:2 (1994), 151–154 | MR | Zbl
[10] Benilan Ph., Kruzhkov S. N., “Conservation laws with continuous flux functions”, NoDEA. Nonlinear Differential Equations Appl., 3 (1996), 395–419 | DOI | MR | Zbl
[11] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl
[12] Kruzhkov S. N., Panov E. Yu., “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, Dokl. AN SSSR, 314:1 (1990), 79–84 | MR | Zbl
[13] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR | Zbl
[14] Tartar L., “Compensated compactness and applications to partial differential equations”, Research notes in mathematics, nonlinear analysis, and mechanics, Heriot-Watt Symposium, V. 4, 1979, 136–212 | MR | Zbl
[15] DiPerna R. J., “Measure-valued solutions to conservation laws”, Arch. Rational Mech. Anal., 88 (1985), 223–270 | DOI | MR | Zbl
[16] Berg I, Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980
[17] Murat F., “Compacité par compensation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 489–507 | MR | Zbl
[18] Panov E. Yu., “O silnoi predkompaktnosti ogranichennykh mnozhestv meroznachnykh reshenii kvazilineinogo uravneniya pervogo poryadka”, Matem. sb., 186:5 (1995), 103–114 | MR | Zbl