On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws
Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 121-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Many-dimensional non-strictly hyperbolic systems of conservation laws with a radially degenerate flux function are considered. For such systems the set of entropies is defined and described, the concept of generalized entropy solution of the Cauchy problem is introduced, and the properties of generalized entropy solutions are studied. The class of strong generalized entropy solutions is distinguished, in which the Cauchy problem in question is uniquely soluble. A condition on the initial data is described that ensures that the generalized entropy solution is strong and therefore unique. Under this condition the convergence of the “vanishing viscosity” method is established. An example presented in the paper shows that a generalized entropy solution is not necessarily unique in the general case.
@article{SM_2000_191_1_a4,
     author = {E. Yu. Panov},
     title = {On the theory of generalized entropy solutions of {the~Cauchy} problem for a~class of non-strictly hyperbolic systems of conservation laws},
     journal = {Sbornik. Mathematics},
     pages = {121--150},
     year = {2000},
     volume = {191},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_1_a4/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 121
EP  - 150
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_1_a4/
LA  - en
ID  - SM_2000_191_1_a4
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws
%J Sbornik. Mathematics
%D 2000
%P 121-150
%V 191
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2000_191_1_a4/
%G en
%F SM_2000_191_1_a4
E. Yu. Panov. On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws. Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 121-150. http://geodesic.mathdoc.fr/item/SM_2000_191_1_a4/

[1] Panov E. Yu., “Ob odnom klasse sistem kvazilineinykh zakonov sokhraneniya”, Matem. sb., 188:5 (1997), 85–112 | MR | Zbl

[2] Panov E. Yu., “K nelokalnoi teorii obobschennykh entropiinykh reshenii zadachi Koshi dlya odnogo klassa giperbolicheskikh sistem zakonov sokhraneniya”, Izv. RAN. Ser. matem., 63:1 (1999), 133–184 | MR | Zbl

[3] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR | Zbl

[4] Lax P. D., “Hyperbolic systems of conservation laws”, Comm. Partial Differential Equations, 10 (1957), 537–566 | MR | Zbl

[5] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl

[6] Lax P. D., “Shock waves and entropy”, Shock waves and entropy, contributions to nonlinear functional analysis, ed. E. A. Zarantonello, Academic Press, New York, 1971, 603–634 | MR

[7] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[8] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII (N.S.), 15 (1994), 31–53 | MR

[9] Benilan F., Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka s nepreryvnymi nelineinostyami”, Dokl. AN, 339:2 (1994), 151–154 | MR | Zbl

[10] Benilan Ph., Kruzhkov S. N., “Conservation laws with continuous flux functions”, NoDEA. Nonlinear Differential Equations Appl., 3 (1996), 395–419 | DOI | MR | Zbl

[11] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl

[12] Kruzhkov S. N., Panov E. Yu., “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, Dokl. AN SSSR, 314:1 (1990), 79–84 | MR | Zbl

[13] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR | Zbl

[14] Tartar L., “Compensated compactness and applications to partial differential equations”, Research notes in mathematics, nonlinear analysis, and mechanics, Heriot-Watt Symposium, V. 4, 1979, 136–212 | MR | Zbl

[15] DiPerna R. J., “Measure-valued solutions to conservation laws”, Arch. Rational Mech. Anal., 88 (1985), 223–270 | DOI | MR | Zbl

[16] Berg I, Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980

[17] Murat F., “Compacité par compensation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 489–507 | MR | Zbl

[18] Panov E. Yu., “O silnoi predkompaktnosti ogranichennykh mnozhestv meroznachnykh reshenii kvazilineinogo uravneniya pervogo poryadka”, Matem. sb., 186:5 (1995), 103–114 | MR | Zbl