$M$-strongly convex subsets and their generating sets
Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 25-60

Voir la notice de l'article provenant de la source Math-Net.Ru

For subsets of a Banach space the notions of a generating set $M$ and an $M$-strongly convex set are introduced. The latter can be represented as the intersection of sets of the form $M+x$, which are translates of the generating set $M$. A generating set must satisfy a condition that ensures a special support principle, as shown in the paper. Using this support principle a new area of convex analysis is constructed enabling one to strengthen classical results of the type of the Caratheodory and Krein–Milman theorems. Various classes of generating sets are described and the properties of $M$-strongly convex sets are studied.
@article{SM_2000_191_1_a1,
     author = {M. V. Balashov and E. S. Polovinkin},
     title = {$M$-strongly convex subsets and their generating sets},
     journal = {Sbornik. Mathematics},
     pages = {25--60},
     publisher = {mathdoc},
     volume = {191},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_1_a1/}
}
TY  - JOUR
AU  - M. V. Balashov
AU  - E. S. Polovinkin
TI  - $M$-strongly convex subsets and their generating sets
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 25
EP  - 60
VL  - 191
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_1_a1/
LA  - en
ID  - SM_2000_191_1_a1
ER  - 
%0 Journal Article
%A M. V. Balashov
%A E. S. Polovinkin
%T $M$-strongly convex subsets and their generating sets
%J Sbornik. Mathematics
%D 2000
%P 25-60
%V 191
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_1_a1/
%G en
%F SM_2000_191_1_a1
M. V. Balashov; E. S. Polovinkin. $M$-strongly convex subsets and their generating sets. Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 25-60. http://geodesic.mathdoc.fr/item/SM_2000_191_1_a1/