$M$-strongly convex subsets and their generating sets
Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 25-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For subsets of a Banach space the notions of a generating set $M$ and an $M$-strongly convex set are introduced. The latter can be represented as the intersection of sets of the form $M+x$, which are translates of the generating set $M$. A generating set must satisfy a condition that ensures a special support principle, as shown in the paper. Using this support principle a new area of convex analysis is constructed enabling one to strengthen classical results of the type of the Caratheodory and Krein–Milman theorems. Various classes of generating sets are described and the properties of $M$-strongly convex sets are studied.
@article{SM_2000_191_1_a1,
     author = {M. V. Balashov and E. S. Polovinkin},
     title = {$M$-strongly convex subsets and their generating sets},
     journal = {Sbornik. Mathematics},
     pages = {25--60},
     year = {2000},
     volume = {191},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_1_a1/}
}
TY  - JOUR
AU  - M. V. Balashov
AU  - E. S. Polovinkin
TI  - $M$-strongly convex subsets and their generating sets
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 25
EP  - 60
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_1_a1/
LA  - en
ID  - SM_2000_191_1_a1
ER  - 
%0 Journal Article
%A M. V. Balashov
%A E. S. Polovinkin
%T $M$-strongly convex subsets and their generating sets
%J Sbornik. Mathematics
%D 2000
%P 25-60
%V 191
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2000_191_1_a1/
%G en
%F SM_2000_191_1_a1
M. V. Balashov; E. S. Polovinkin. $M$-strongly convex subsets and their generating sets. Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 25-60. http://geodesic.mathdoc.fr/item/SM_2000_191_1_a1/

[1] Levi F. W., “On Helly's theorem and the axioms of convexity”, J. Indian Math. Soc. (N.S.), 15 (1951), 65–76 | MR | Zbl

[2] Convexity, Proceedings of symposia in pure mathematics, Vol. VIII (University of Washington Scattle, Washington June 13–15, 1961), ed. Klee V. L., Amer. Math. Soc., Providence, RI, 1963 | MR

[3] Dolecki S., Kurcyusz S., “On $\Phi$-convexity in extremal problems”, SIAM J. Control Optim., 16 (1978), 277–300 | DOI | MR | Zbl

[4] Soltan V. P., Vvedenie v aksiomaticheskuyu teoriyu vypuklosti, Shtiintsa, Kishinev, 1984 | MR | Zbl

[5] Ben-Tal A., Ben-Israel A., “$F$-convex functions: properties and applications”, Generalized concavity in optimization and economics, Proc. NATO Adv. Study Inst. (Vancouver/Can., 1980), Academic Press, 1981, 301–334 | Zbl

[6] Singer I., “Surrogate conjugate functions and surrogate convexity”, Appl. Anal., 16 (1983), 291–327 | DOI | MR | Zbl

[7] Frankowska H., Olech C., “$R$-convexity of the integral of the set-valued functions”, Contributions to analysis and geometry, Johns Hopkins Univ. Press, Baltimore, MD, 1981, 117–129 | MR

[8] Polovinkin E. S., “O svoistvakh silno vypuklykh mnozhestv”, Modelirovanie protsessov upravleniya i obrabotki informatsii, Izd-vo MFTI, M., 1994, 182–189

[9] Polovinkin E. S., “Silno vypuklyi analiz”, Matem. sb., 187:2 (1996), 103–130 | MR | Zbl

[10] Polovinkin E. S., “O vypuklykh i silno vypuklykh approksimatsiyakh mnozhestv”, Dokl. RAN, 350:3 (1996), 308–311 | MR | Zbl

[11] Polovinkin E. S., “On strongly convex sets”, Phystech J., 2:1 (1996), 43–59

[12] Polovinkin E. S., “Obobschenie teorem Karateodori i Kreina–Milmana dlya silno vypuklykh mnozhestv”, Dokl. RAN, 355:2 (1997), 164–166 | MR | Zbl

[13] Balashov M. V., Polovinkin E. S., “Silno vypuklaya obolochka i ee svoistva”, Nekotorye problemy sovremennoi matematiki i ikh prilozheniya k zadacham fiziki i mekhaniki, Izd-vo MFTI, M., 1995, 27–36

[14] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[15] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1984 | MR

[16] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[17] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[18] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[19] Polovinkin E. S., Elementy teorii mnogoznachnykh otobrazhenii, Izd-vo MFTI, M., 1982

[20] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Nauka, M., 1979 | MR

[21] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[22] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[23] Steiner J., “Von dem Krümmungsschwerpunkte ebener Curven”, J. Reine Angew. Math., 21 (1840), 33–63 ; 101–122; Ges. Werke, Bd. 2, G. Reiner, Berlin, 1882, 99–159 | Zbl | Zbl

[24] Saint Pierre J., “Point de Steiner et sections lipschitziennes”, Sém. Anal. Convexe, 15:7 (1985) | MR | Zbl

[25] Gryunbaum B., Etyudy po kombinatornoi geometrii i teorii vypuklykh tel, Nauka, M., 1971 | MR | Zbl

[26] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[27] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR