@article{SM_2000_191_1_a1,
author = {M. V. Balashov and E. S. Polovinkin},
title = {$M$-strongly convex subsets and their generating sets},
journal = {Sbornik. Mathematics},
pages = {25--60},
year = {2000},
volume = {191},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_1_a1/}
}
M. V. Balashov; E. S. Polovinkin. $M$-strongly convex subsets and their generating sets. Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 25-60. http://geodesic.mathdoc.fr/item/SM_2000_191_1_a1/
[1] Levi F. W., “On Helly's theorem and the axioms of convexity”, J. Indian Math. Soc. (N.S.), 15 (1951), 65–76 | MR | Zbl
[2] Convexity, Proceedings of symposia in pure mathematics, Vol. VIII (University of Washington Scattle, Washington June 13–15, 1961), ed. Klee V. L., Amer. Math. Soc., Providence, RI, 1963 | MR
[3] Dolecki S., Kurcyusz S., “On $\Phi$-convexity in extremal problems”, SIAM J. Control Optim., 16 (1978), 277–300 | DOI | MR | Zbl
[4] Soltan V. P., Vvedenie v aksiomaticheskuyu teoriyu vypuklosti, Shtiintsa, Kishinev, 1984 | MR | Zbl
[5] Ben-Tal A., Ben-Israel A., “$F$-convex functions: properties and applications”, Generalized concavity in optimization and economics, Proc. NATO Adv. Study Inst. (Vancouver/Can., 1980), Academic Press, 1981, 301–334 | Zbl
[6] Singer I., “Surrogate conjugate functions and surrogate convexity”, Appl. Anal., 16 (1983), 291–327 | DOI | MR | Zbl
[7] Frankowska H., Olech C., “$R$-convexity of the integral of the set-valued functions”, Contributions to analysis and geometry, Johns Hopkins Univ. Press, Baltimore, MD, 1981, 117–129 | MR
[8] Polovinkin E. S., “O svoistvakh silno vypuklykh mnozhestv”, Modelirovanie protsessov upravleniya i obrabotki informatsii, Izd-vo MFTI, M., 1994, 182–189
[9] Polovinkin E. S., “Silno vypuklyi analiz”, Matem. sb., 187:2 (1996), 103–130 | MR | Zbl
[10] Polovinkin E. S., “O vypuklykh i silno vypuklykh approksimatsiyakh mnozhestv”, Dokl. RAN, 350:3 (1996), 308–311 | MR | Zbl
[11] Polovinkin E. S., “On strongly convex sets”, Phystech J., 2:1 (1996), 43–59
[12] Polovinkin E. S., “Obobschenie teorem Karateodori i Kreina–Milmana dlya silno vypuklykh mnozhestv”, Dokl. RAN, 355:2 (1997), 164–166 | MR | Zbl
[13] Balashov M. V., Polovinkin E. S., “Silno vypuklaya obolochka i ee svoistva”, Nekotorye problemy sovremennoi matematiki i ikh prilozheniya k zadacham fiziki i mekhaniki, Izd-vo MFTI, M., 1995, 27–36
[14] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR
[15] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1984 | MR
[16] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[17] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[18] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR
[19] Polovinkin E. S., Elementy teorii mnogoznachnykh otobrazhenii, Izd-vo MFTI, M., 1982
[20] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Nauka, M., 1979 | MR
[21] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962
[22] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972
[23] Steiner J., “Von dem Krümmungsschwerpunkte ebener Curven”, J. Reine Angew. Math., 21 (1840), 33–63 ; 101–122; Ges. Werke, Bd. 2, G. Reiner, Berlin, 1882, 99–159 | Zbl | Zbl
[24] Saint Pierre J., “Point de Steiner et sections lipschitziennes”, Sém. Anal. Convexe, 15:7 (1985) | MR | Zbl
[25] Gryunbaum B., Etyudy po kombinatornoi geometrii i teorii vypuklykh tel, Nauka, M., 1971 | MR | Zbl
[26] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR
[27] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR