On uniform ergodic theorems for quadratic processes on $C^*$-algebras
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1891-1903

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate questions of the convergence in the uniform topology of Ceséaro time averages of stationary quantum quadratic processes defined on $C^*$-algebras. A necessary and sufficient condition is given for the convergence of averages in the uniform topology. In addition, the convergence of weighted averages in the uniform topology is investigated and it is proved that averages weighted by Besicovitch $\Phi$-functions converge.
@article{SM_2000_191_12_a6,
     author = {F. M. Mukhamedov},
     title = {On uniform ergodic theorems for quadratic processes on $C^*$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {1891--1903},
     publisher = {mathdoc},
     volume = {191},
     number = {12},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a6/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
TI  - On uniform ergodic theorems for quadratic processes on $C^*$-algebras
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1891
EP  - 1903
VL  - 191
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_12_a6/
LA  - en
ID  - SM_2000_191_12_a6
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%T On uniform ergodic theorems for quadratic processes on $C^*$-algebras
%J Sbornik. Mathematics
%D 2000
%P 1891-1903
%V 191
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_12_a6/
%G en
%F SM_2000_191_12_a6
F. M. Mukhamedov. On uniform ergodic theorems for quadratic processes on $C^*$-algebras. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1891-1903. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a6/