Theorems on representation of functions by series
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1873-1889 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that if a system $\Phi$ of functions is such that each measurable function that is finite almost everywhere can be represented by a $\Phi$-series convergent in measure, then the same is true for measurable functions that can be equal to plus infinity or minus infinity on sets of positive measure.
@article{SM_2000_191_12_a5,
     author = {K. S. Kazarian and D. Waterman},
     title = {Theorems on representation of functions by series},
     journal = {Sbornik. Mathematics},
     pages = {1873--1889},
     year = {2000},
     volume = {191},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a5/}
}
TY  - JOUR
AU  - K. S. Kazarian
AU  - D. Waterman
TI  - Theorems on representation of functions by series
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1873
EP  - 1889
VL  - 191
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_12_a5/
LA  - en
ID  - SM_2000_191_12_a5
ER  - 
%0 Journal Article
%A K. S. Kazarian
%A D. Waterman
%T Theorems on representation of functions by series
%J Sbornik. Mathematics
%D 2000
%P 1873-1889
%V 191
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2000_191_12_a5/
%G en
%F SM_2000_191_12_a5
K. S. Kazarian; D. Waterman. Theorems on representation of functions by series. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1873-1889. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a5/

[1] Ulyanov P. L., “O rabotakh N. N. Luzina po metricheskoi teorii funktsii”, UMN, 40:3 (1985), 15–70 | MR | Zbl

[2] Kahane J.-P., Lemarié-Rieusset P.-G., Fourier series and wavelets, Gordon Breach Publ., Luxembourg, 1995

[3] Luzin N. N., Integral i trigonometricheskii ryad, Gostekhizdat, M., 1951 | MR

[4] Luzin N. N., Sobranie sochinenii, T. 1, Izd-vo AN SSSR, M., 1953 | MR

[5] Menschoff D., “Sur la représentation des fonctions mesurables par des series trigonométriques”, Matem. sb., 9 (51):3 (1941), 667–692 | MR

[6] Talalyan A. A., Ovsepyan R. I., “Teoremy D. E. Menshova o predstavlenii i ikh vliyanie na razvitie metricheskoi teorii funktsii”, UMN, 47:5 (1992), 15–44 | MR | Zbl

[7] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR

[8] Talalyan A. A., “O sistemakh, ryady po kotorym predstavlyayut lyubye izmerimye funktsii”, Matem. sb., 76 (118):1 (1968), 39–51 | MR

[9] Talalyan A. A., “Voprosy predstavleniya i edinstvennosti v teorii ortogonalnykh ryadov”, Itogi nauki. Matem. analiz 1970, VINITI, M., 1971, 5–64 | MR | Zbl

[10] Bennett C., Sharpley R., Interpolation of Operations, Academic Press, London, 1988 | MR

[11] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[12] Ulyanov P. L., “Predstavleniya funktsii ryadami i prostranstva $\varphi(L)$”, UMN, 27:2 (1972), 3–52 | MR | Zbl

[13] Banach S., Theory of linear operations, North-Holland, Amsterdam, 1987 | MR | Zbl