Theorems on representation of functions by series
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1873-1889

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if a system $\Phi$ of functions is such that each measurable function that is finite almost everywhere can be represented by a $\Phi$-series convergent in measure, then the same is true for measurable functions that can be equal to plus infinity or minus infinity on sets of positive measure.
@article{SM_2000_191_12_a5,
     author = {K. S. Kazarian and D. Waterman},
     title = {Theorems on representation of functions by series},
     journal = {Sbornik. Mathematics},
     pages = {1873--1889},
     publisher = {mathdoc},
     volume = {191},
     number = {12},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a5/}
}
TY  - JOUR
AU  - K. S. Kazarian
AU  - D. Waterman
TI  - Theorems on representation of functions by series
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1873
EP  - 1889
VL  - 191
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_12_a5/
LA  - en
ID  - SM_2000_191_12_a5
ER  - 
%0 Journal Article
%A K. S. Kazarian
%A D. Waterman
%T Theorems on representation of functions by series
%J Sbornik. Mathematics
%D 2000
%P 1873-1889
%V 191
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_12_a5/
%G en
%F SM_2000_191_12_a5
K. S. Kazarian; D. Waterman. Theorems on representation of functions by series. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1873-1889. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a5/