Thetanulls and differential equations
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1827-1871 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The closedness of the system of thetanulls (and the Siegel modular forms) and their first derivatives with respect to differentiation is well known in the one-dimensional case. It is shown in the present paper that thetanulls and their various logarithmic derivatives satisfy a non-linear system of differential equations; only one- and two-dimensional versions of this result were known before. Several distinct examples of such systems are presented, and a theorem on the transcendence degree of the differential closure of the field generated by all thetanulls is established. On the basis of a study of the modular properties of logarithmic derivatives of thetanulls (previously unknown) relations between these functions and thetanulls themselves are obtained in dimensions 2 and 3.
@article{SM_2000_191_12_a4,
     author = {W. V. Zudilin},
     title = {Thetanulls and differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1827--1871},
     year = {2000},
     volume = {191},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a4/}
}
TY  - JOUR
AU  - W. V. Zudilin
TI  - Thetanulls and differential equations
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1827
EP  - 1871
VL  - 191
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_12_a4/
LA  - en
ID  - SM_2000_191_12_a4
ER  - 
%0 Journal Article
%A W. V. Zudilin
%T Thetanulls and differential equations
%J Sbornik. Mathematics
%D 2000
%P 1827-1871
%V 191
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2000_191_12_a4/
%G en
%F SM_2000_191_12_a4
W. V. Zudilin. Thetanulls and differential equations. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1827-1871. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a4/

[1] Krazer A., Lehrbuch der Thetafunktionen, Leipzig, 1903 ; Reprint, Chelsea Publ., New York, 1970 | Zbl | Zbl

[2] Igusa J., Theta functions, Grundlehren Math. Wiss., 194, Springer-Verlag, Berlin–Heidelberg–New York, 1972 ; Мамфорд Д., Лекции о тэта-функциях, Мир, М., 1988 | MR | Zbl | MR

[3] Jacobi C. G. J., Fundamenta nova theoriae functionum ellipticarum, Sumtibus Fratrum Borntraeger, Regiomonti, 1829; Gesammelte Werke, V. 1, Akademie der Wissenschaften, Berlin, 1881, 49–239; Reprint, Chelsea Publ., New York, 1969

[4] Jacobi C. G. J., “Theorie der elliptischen Functionen aus den Eigenschaften der Thetareihen abgeleitet”, Gesammelte Werke, V. 1, Akademie der Wissenschaften, Berlin, 1881, 497–538; Reprint, Chelsea Publ., New York, 1969; Уиттекер Э. Т., Ватсон Дж. Н., Курс современного анализа, Т. 2, Физматлит, М., 1963

[5] Jacobi C. G. J., “Über die Differentialgleichung, welcher die Reihen $1\pm2q+2q^4\pm2q^9+\text{etc.}$, $2\root4\of q+2\root 4\of{q^9}+2\root4\of{q^{25}}+\text{etc.}$ Genüge leisten”, Crelle's J. für Math., 36:2 (1848), 97–112 ; Gesammelte Werke, V. 2, Akademie der Wissenschaften, Berlin, 1882, 171–190; Reprint, Chelsea Publ., New York, 1969 | Zbl

[6] Bertrand D., Formes modulaires et transcendance, Notes de cours du Centre Émile Borel, 17, Institut Henri Poincaré, Paris, 1999

[7] Mahler K., “On algebraic differential equations satisfied by automorphic functions”, J. Austral. Math. Soc., 10 (1969), 445–450 | DOI | MR | Zbl

[8] Bertrand D., “Theta functions and transcendence”, International symposium on number theory (Madras, 1996), Ramanujan J., 1:4 (1997), 339–350 | DOI | MR | Zbl

[9] Bertrand D., “Chapter 1. $\Theta(\tau,z)$ and transcendence”, Introduction to algebraic independence theory, Indépendance algébrique (Luminy, 1997), eds. Yu. V. Nesterenko, P. Philippon, Springer-Verlag, Berlin, 2000, 1–11 | MR

[10] Halphen M., “Sur un système d'équations différentielles”, C. R. Acad. Sci. Paris, 92 (1881), 1101–1103 | MR

[11] Radimacher H., Topics in analytic number theory, Grundlehren Math. Wiss., 169, Springer-Verlag, Berlin–Heidelberg–New York, 1973 | MR

[12] Ramanujan S., “On certain arithmetical functions”, Trans. Cambridge Philosoph. Soc., 22:9 (1916), 159–184; Collected papers, eds. G. H. Hardy, P. V. Sechu Aiyar, B. M. Wilson, Cambridge Univ. Press, Cambridge, 1927, 136–162; Reprint, Chelsea Publ., New York, 1962

[13] Freitag E., Siegelsche Modulfunktionen, Springer-Verlag, Berlin–Heidelberg, 1983 | MR

[14] Lawden D. F., Elliptic functions and applications, Appl. Math. Sci., 80, New York–Berlin, Springer, 1989 | MR | Zbl

[15] Nesterenko Yu. V., “Modulyarnye funktsii i voprosy transtsendentnosti”, Matem. sb., 187:9 (1996), 65–96 | MR | Zbl

[16] Nesterenko Yu. V., “O mere algebraicheskoi nezavisimosti znachenii funktsii Ramanudzhana”, Tr. MIAN, 218, Nauka, M., 1997, 299–334 | MR | Zbl

[17] Nesterenko Yu. V., “Otsenki kratnostei nulei dlya teta-konstant”, Teoreticheskaya i prikladnaya matem., 5:1 (1999), 1–6 | MR

[18] Ohyama Y., “Systems of nonlinear differential equations related to second order linear equations”, Osaka J. Math., 33 (1996), 927–949 | MR | Zbl

[19] Bertrand D., Zudilin W., On the transendence degree of the differential field generated by Siegel modular forms, Prépubl. de l'Institut de Math. de Jussieu, No 248, 2000 ; http://xxx.lanl.gov/abs/math/0006176 | MR

[20] Ohyama Y., “Differential equations of theta constants of genus two”, Algebraic Analysis of Singular Perturbations, Sūrikaisekikenkyūsho Kōkyūroku (Kyoto, 1996), 968, Kyoto Univ., Kyoto, 1996, 96–103, in Japanese | MR

[21] Ohyama Y., Nonlinear equations on theta constants of genus two, Preprint, Osaka Univ., Osaka, 1996 | MR | Zbl

[22] Adin R. M., Kopeliovich Ya., “Short eigenvectors and multidimensional theta functions”, Linear Algebra Appl., 257 (1997), 49–63 | DOI | MR | Zbl

[23] Shimura G., “On the derivatives of theta functions and modular forms”, Duke Math. J., 44 (1977), 365–387 | DOI | MR | Zbl

[24] Resnikoff H. L., “Automorphic forms and automorphy preserving differential operators on products of halfplanes”, Abh. Math. Sem. Univ. Hamburg, 38 (1972), 168–198 | DOI | MR | Zbl