@article{SM_2000_191_12_a4,
author = {W. V. Zudilin},
title = {Thetanulls and differential equations},
journal = {Sbornik. Mathematics},
pages = {1827--1871},
year = {2000},
volume = {191},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a4/}
}
W. V. Zudilin. Thetanulls and differential equations. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1827-1871. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a4/
[1] Krazer A., Lehrbuch der Thetafunktionen, Leipzig, 1903 ; Reprint, Chelsea Publ., New York, 1970 | Zbl | Zbl
[2] Igusa J., Theta functions, Grundlehren Math. Wiss., 194, Springer-Verlag, Berlin–Heidelberg–New York, 1972 ; Мамфорд Д., Лекции о тэта-функциях, Мир, М., 1988 | MR | Zbl | MR
[3] Jacobi C. G. J., Fundamenta nova theoriae functionum ellipticarum, Sumtibus Fratrum Borntraeger, Regiomonti, 1829; Gesammelte Werke, V. 1, Akademie der Wissenschaften, Berlin, 1881, 49–239; Reprint, Chelsea Publ., New York, 1969
[4] Jacobi C. G. J., “Theorie der elliptischen Functionen aus den Eigenschaften der Thetareihen abgeleitet”, Gesammelte Werke, V. 1, Akademie der Wissenschaften, Berlin, 1881, 497–538; Reprint, Chelsea Publ., New York, 1969; Уиттекер Э. Т., Ватсон Дж. Н., Курс современного анализа, Т. 2, Физматлит, М., 1963
[5] Jacobi C. G. J., “Über die Differentialgleichung, welcher die Reihen $1\pm2q+2q^4\pm2q^9+\text{etc.}$, $2\root4\of q+2\root 4\of{q^9}+2\root4\of{q^{25}}+\text{etc.}$ Genüge leisten”, Crelle's J. für Math., 36:2 (1848), 97–112 ; Gesammelte Werke, V. 2, Akademie der Wissenschaften, Berlin, 1882, 171–190; Reprint, Chelsea Publ., New York, 1969 | Zbl
[6] Bertrand D., Formes modulaires et transcendance, Notes de cours du Centre Émile Borel, 17, Institut Henri Poincaré, Paris, 1999
[7] Mahler K., “On algebraic differential equations satisfied by automorphic functions”, J. Austral. Math. Soc., 10 (1969), 445–450 | DOI | MR | Zbl
[8] Bertrand D., “Theta functions and transcendence”, International symposium on number theory (Madras, 1996), Ramanujan J., 1:4 (1997), 339–350 | DOI | MR | Zbl
[9] Bertrand D., “Chapter 1. $\Theta(\tau,z)$ and transcendence”, Introduction to algebraic independence theory, Indépendance algébrique (Luminy, 1997), eds. Yu. V. Nesterenko, P. Philippon, Springer-Verlag, Berlin, 2000, 1–11 | MR
[10] Halphen M., “Sur un système d'équations différentielles”, C. R. Acad. Sci. Paris, 92 (1881), 1101–1103 | MR
[11] Radimacher H., Topics in analytic number theory, Grundlehren Math. Wiss., 169, Springer-Verlag, Berlin–Heidelberg–New York, 1973 | MR
[12] Ramanujan S., “On certain arithmetical functions”, Trans. Cambridge Philosoph. Soc., 22:9 (1916), 159–184; Collected papers, eds. G. H. Hardy, P. V. Sechu Aiyar, B. M. Wilson, Cambridge Univ. Press, Cambridge, 1927, 136–162; Reprint, Chelsea Publ., New York, 1962
[13] Freitag E., Siegelsche Modulfunktionen, Springer-Verlag, Berlin–Heidelberg, 1983 | MR
[14] Lawden D. F., Elliptic functions and applications, Appl. Math. Sci., 80, New York–Berlin, Springer, 1989 | MR | Zbl
[15] Nesterenko Yu. V., “Modulyarnye funktsii i voprosy transtsendentnosti”, Matem. sb., 187:9 (1996), 65–96 | MR | Zbl
[16] Nesterenko Yu. V., “O mere algebraicheskoi nezavisimosti znachenii funktsii Ramanudzhana”, Tr. MIAN, 218, Nauka, M., 1997, 299–334 | MR | Zbl
[17] Nesterenko Yu. V., “Otsenki kratnostei nulei dlya teta-konstant”, Teoreticheskaya i prikladnaya matem., 5:1 (1999), 1–6 | MR
[18] Ohyama Y., “Systems of nonlinear differential equations related to second order linear equations”, Osaka J. Math., 33 (1996), 927–949 | MR | Zbl
[19] Bertrand D., Zudilin W., On the transendence degree of the differential field generated by Siegel modular forms, Prépubl. de l'Institut de Math. de Jussieu, No 248, 2000 ; http://xxx.lanl.gov/abs/math/0006176 | MR
[20] Ohyama Y., “Differential equations of theta constants of genus two”, Algebraic Analysis of Singular Perturbations, Sūrikaisekikenkyūsho Kōkyūroku (Kyoto, 1996), 968, Kyoto Univ., Kyoto, 1996, 96–103, in Japanese | MR
[21] Ohyama Y., Nonlinear equations on theta constants of genus two, Preprint, Osaka Univ., Osaka, 1996 | MR | Zbl
[22] Adin R. M., Kopeliovich Ya., “Short eigenvectors and multidimensional theta functions”, Linear Algebra Appl., 257 (1997), 49–63 | DOI | MR | Zbl
[23] Shimura G., “On the derivatives of theta functions and modular forms”, Duke Math. J., 44 (1977), 365–387 | DOI | MR | Zbl
[24] Resnikoff H. L., “Automorphic forms and automorphy preserving differential operators on products of halfplanes”, Abh. Math. Sem. Univ. Hamburg, 38 (1972), 168–198 | DOI | MR | Zbl