Setting and solving several factorization problems for integral operators
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1809-1825 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of factorization $$ I-K=(I-U_-)(I-U_+), $$ is considered. Here $I$ is the identity operator, $K$ is a fixed integral operator of Fredholm type: $$ (Kf)(x)=\int_a^bk(x,t)f(t)\,dt, \qquad -\infty\leqslant a<b\leqslant+\infty, $$ $U_\pm$ are unknown upper and lower Volterra operators. Classes of generalized Volterra operators $U_\pm$ are introduced such that $I-U_\pm$ are not necessarily invertible operators in the spaces of functions on $(a,b)$ under consideration. A combination of the method of non-linear factorization equations and a priori estimates brings forth new results on the existence and properties of the solution to this problem for $k\geqslant 0$, both in the subcritical case $\mu<1$ and in the critical case $\mu=1$, where $\mu=r(K)$ the spectral radius of the operator $K$. In addition, the problem of non-Volterra factorization is posed and studied, when the kernels of $U_+$ and $U_-$ vanish on some parts $S_-$ and $S_+$ of the domain $S=(a,b)^2$ such that $S_+\cup S_-=S$.
@article{SM_2000_191_12_a3,
     author = {N. B. Engibaryan},
     title = {Setting and solving several factorization problems for integral operators},
     journal = {Sbornik. Mathematics},
     pages = {1809--1825},
     year = {2000},
     volume = {191},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a3/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Setting and solving several factorization problems for integral operators
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1809
EP  - 1825
VL  - 191
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_12_a3/
LA  - en
ID  - SM_2000_191_12_a3
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Setting and solving several factorization problems for integral operators
%J Sbornik. Mathematics
%D 2000
%P 1809-1825
%V 191
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2000_191_12_a3/
%G en
%F SM_2000_191_12_a3
N. B. Engibaryan. Setting and solving several factorization problems for integral operators. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1809-1825. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a3/

[1] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve, Nauka, M., 1967

[2] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, UMN, 13:5 (1958), 3–120 | MR | Zbl

[3] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1972 | MR

[4] Engibaryan N. B., “Nestatsionarnaya diffuziya izlucheniya”, Astrofizika, 2:2 (1966), 197–204

[5] Engibaryan N. B., “O faktorizatsii simmetricheskikh integralnykh operatorov”, Dokl. AN SSSR, 203:1 (1972), 19–21 | MR | Zbl

[6] Ambartsumyan V. A., Nauchnye trudy, T. 1, Erevan, 1960 | Zbl

[7] Vladimirov V. S., “Priblizhennoe reshenie odnoi kraevoi zadachi”, Prikl. matem. i mekh., 19 (1958), 315

[8] Kagivada H. H., Kalaba R. E., Shumitsky A., “An initial-value method for fredholm integral equation”, J. Math. Anal. Appl., 19 (1967), 197–203 | DOI | MR

[9] Engibaryan N. B., Mnatsakanyan M. A., “O faktorizatsii integralnykh operatorov”, Dokl. AN SSSR, 206:4 (1972), 792–795 | MR | Zbl

[10] Engibaryan N. B., Arutyunyan A. A., “Integralnye uravneniya na polupryamoi s raznostnymi yadrami i nelineinye funktsionalnye uravneniya”, Matem. sb., 97 (139):1 (1975), 35–58 | Zbl

[11] Engibaryan N. B., “Nekotorye faktorizatsionnye teoremy dlya integralnykh operatorov”, Dokl. AN SSSR, 230:5 (1976), 1021–1024 | MR | Zbl

[12] Engibaryan N. B., “O nelineinykh uravneniyakh faktorizatsii operatorov”, Primenenie metodov teorii funktsii i funktsionalnogo analiza k zadacham matematicheskoi fiziki, Izd-vo ErGU, Erevan, 1982, 123–128

[13] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Matem. analiz, 22, VINITI, M., 1984, 175–244 | MR

[14] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Gostekhizdat, M., 1962 | MR

[15] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[16] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR