Setting and solving several factorization problems for integral operators
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1809-1825

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of factorization $$ I-K=(I-U_-)(I-U_+), $$ is considered. Here $I$ is the identity operator, $K$ is a fixed integral operator of Fredholm type: $$ (Kf)(x)=\int_a^bk(x,t)f(t)\,dt, \qquad -\infty\leqslant a\leqslant+\infty, $$ $U_\pm$ are unknown upper and lower Volterra operators. Classes of generalized Volterra operators $U_\pm$ are introduced such that $I-U_\pm$ are not necessarily invertible operators in the spaces of functions on $(a,b)$ under consideration. A combination of the method of non-linear factorization equations and a priori estimates brings forth new results on the existence and properties of the solution to this problem for $k\geqslant 0$, both in the subcritical case $\mu1$ and in the critical case $\mu=1$, where $\mu=r(K)$ the spectral radius of the operator $K$. In addition, the problem of non-Volterra factorization is posed and studied, when the kernels of $U_+$ and $U_-$ vanish on some parts $S_-$ and $S_+$ of the domain $S=(a,b)^2$ such that $S_+\cup S_-=S$.
@article{SM_2000_191_12_a3,
     author = {N. B. Engibaryan},
     title = {Setting and solving several factorization problems for integral operators},
     journal = {Sbornik. Mathematics},
     pages = {1809--1825},
     publisher = {mathdoc},
     volume = {191},
     number = {12},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a3/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Setting and solving several factorization problems for integral operators
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1809
EP  - 1825
VL  - 191
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_12_a3/
LA  - en
ID  - SM_2000_191_12_a3
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Setting and solving several factorization problems for integral operators
%J Sbornik. Mathematics
%D 2000
%P 1809-1825
%V 191
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_12_a3/
%G en
%F SM_2000_191_12_a3
N. B. Engibaryan. Setting and solving several factorization problems for integral operators. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1809-1825. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a3/